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ABSTRACT 

3D virtual reality (VR) technology has long promised to provide 
new ways to view and interact with abstract data, but it has been 
held back by technological limitations and the difficulty of moving 
through 3D environments. Recent innovations in VR technology 
overcome previous constraints, but existing research has had mixed 
insights into the optimal types of virtual movement for task 
performance. We conducted a two-factor between subjects (N = 20) 
pilot experiment testing two types of viewpoint interaction for 
exploring a 3D scatterplot in a virtual environment developed using 
consumer-grade VR hardware and software tools. In one condition 
users changed their viewpoint by physically walking around the 3D 
scatterplot, the system matching their physical location to their 
virtual one. In the other users stood still and rotated the scatterplot 
with a controller. An exploratory analysis of plot-specific memory 
tasks revealed that individual differences played a strong role 
depending on the condition. In particular, low spatial ability users 
were better supported by walking interaction rather than interaction 
using a controller. The pilot experiment revealed potentials for 
improvements in the chosen measures, and the findings will inform 
the design of future larger-scale evaluations. 

Keywords: Virtual reality, visualization, immersive analytics, 3d 
navigation, evaluation 

Index Terms: • Human-centered computing~Laboratory 
experiments   • Human-centered computing~Virtual reality 

1 INTRODUCTION 

Representing information graphically has long helped people 
understand data, but as we generate increasingly large, complex 
datasets our visualization toolset struggles to keep pace. Recent 
advances in immersive virtual reality (IVR) promise to make 
implementation of highly intuitive interactions with full 3D 
environments relatively straightforward for the first time [1]. Many 
researchers have looked to IVR to help users unlock meaning latent 
in large datasets, speaking of the potential power of immersing 
users in their data [2, 3]. For example, Nagel et al. [4], proposed 
that interacting through embodied movement would aid in 
understanding data representations. 

Currently, 3D representations are often eschewed within 
information visualization and visual analytics [2, 5]. A major 
obstacle has been that 3D visualizations necessitate movement, or 
viewpoint transition, which requires more complexity than an 
equivalent 2D visualization. The difficulty of navigating in a 3D 
environment itself has long held back 3D visualization [6, 7], and 
moving through 3D environments is a high cognitive load task [8]. 
Shovman et al. [9] even found that restricting degrees of freedom 
of movement can increase performance for some tasks in 3D. 

Studies regarding viewpoint transitions have had mixed results 
regarding task performance differences between rotating or moving 
stimuli and moving/rotating users. For example, Wraga et al. [10] 
found support for bodily rotation being superior to pure virtual 
rotation in a search task in a virtual environment. Similarly, Riecke 
et al. [11] found that walking was superior compared to joystick-
driven viewpoint changes, also using a virtual environment search 
task. In contrast, Holmes et al. [12] did not find a difference in 
performance in a memory task between participants who rotated a 
model on a table and those who instead walked around it. They did 
find, however, that both types of rotations were superior to a series 
of static views, indicating the importance of the transitions 
themselves. 

Given that VR studies have found advantages for coupling 
physical and virtual movement (i.e., embodied movement), as well 
as pointing to the difficulty of 3D navigation using hand-held input 
devices, we hypothesized that walking around a 3D data 
representation would result in better comprehension of the data 
than simply rotating the representation using an input device 
(remaining static themselves). In order to begin evaluating this 
hypothesis, we created an IVR platform to display 3D scatterplots 
in a room-scale virtual environment that allowed users to either 
walk around the scatterplot object, or rotate and move it using a 
controller. We use scatterplots as a departing point for evaluating 
3D IVR visualization techniques as they are comparatively simple 
representations that are readily adaptable to an added dimension, 
and have been used in previous 3D visualization studies [5, 13]. 

2 METHODS 

2.1 Participants 

20 participants (11 female, 9 male) in total took part in the study. 
The average age was 24.9 years and all were students in the 
Department of Geography, Pennsylvania State University. Each 
participant was paid 5 dollars for completing a session. 

2.2 Materials 

We selected the HTC Vive room-scale VR system running a 
SteamVR-based virtual environment developed in Unity game 
engine as the IVR platform. See Figure 1 for the physical setup and  
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Figure 1: The IVR hardware (HTC Vive), which allows a user to 

move around a limited physical area, in which their physical position 

is matched to their virtual position. 

experiment location. The virtual environment provided a consistent 
reference frame while lacking distinguishing features that would 
detract from the plot itself (Figure 2). The scatterplots could be 
rotated around the vertical axis using a controller. The scatterplots 
were generated using a set 3D model for the axes and tick marks, 
with the labels and points being generated using five datasets 
exported from base R [14]: airquality, mtcars, iris, state (renamed 
“Countries” within the experiment), and seatbelts.  

Three performance measures were created for this experiment to 
ascertain participants’ comprehension, or more accurately, their 
ability to memorize of each of the scatterplots encountered. First, 
participants were asked to estimate the number of points of the last 
scatterplot presented as a basic memory task. Estimates were scored 
as the error from the true value, as a percent of the true value (lower 
is better). Second, users were asked which pairs of graphed 
variables in the presented scatterplot were positively correlated, if 
any, and which pairs were negatively correlated, if any. 

Third, participants were given two matching questions, where 
they were presented with images of four similar graphs, and tasked 
with selecting the one correct image of the last scatterplot they 
viewed. For the correlation and matching tasks, scores are 
percentage of correct selections (higher is better). 

Two measures of individual differences were administered, one 
as a measure of graph reading ability, and another as a proxy for 
spatial abilities (mental rotation). The mental rotation questionnaire 
was made up of six items from the original 24-item scale 
(Cronbach’s alpha: α = .81 ) from Peters et al. [15]. We selected 
nine items from Galesic’s [16]) 13-item graph literacy 
questionnaire, removing questions that appeared to duplicate one 
another (e.g., multiple questions about bar charts). The Cronbach’s 
alpha was low (α = .32), and no spurious items were apparent, so 
caution must be used in interpreting results. 

Several additional features were implemented to facilitate the 
experiment. Graphic user interface (GUI) elements included a timer 
that counted down until the end of an exposure for the participant, 
and a virtual laser pointer-like visual attached to the HTC Vive 
controller. The height of the scatterplot was adjusted automatically 
according to the height of the user. 

2.3 Design and Procedure 

To evaluate our hypothesis that walking/embodied interaction 
increases user memory of a 3D graph object compared to rotating 
the object using an input device, we designed a between-subjects 
experiment. Participants encountered a series of five 3D 
scatterplots within an IVR system. They answered performance-
based questions regarding the scatterplots in one of two conditions, 
which represented two different types of viewpoint interaction  

Figure 2: Interacting with a 3D scatterplot in rotating condition 

within the virtual environment. The virtual controller functions are 

labeled. 

 (Figure 3). The first is walking, where the user is able to walk 
around the 3D scatterplot embedded in an IVR environment, their 
virtual viewpoint being matched to their physical location and look 
direction by the system. The second condition is rotation, where 
users are immersed in the same IVR environment, but do not move. 
Instead, they must use a controller to rotate and move the scatterplot 
in order to view it from different sides (Fig. 3). 

Experiments were conducted in 225 Walker building on 
Pennsylvania State University’s main campus (Figure 1). At the 
beginning of a session, participants were informed of the nature of 
the experiment, and briefed on their rights as a participant in 
accordance with the approval obtained by the Pennsylvania State 
University Institutional Review Board (IRB). Condition 
assignment was randomized, with 10 participants per condition. 
Once verbal consent was obtained, participants were then given the 
demographics questionnaire, the mental rotation test, and the graph 
reading test, before moving to the training phase. 

Figure 3: The two experimental conditions. 

In the training and encoding phases, participants were assigned 
to one of the two conditions (i.e., walking or rotating). Participants 
alternated between viewing five scatterplots and completing the 
accompanying task questionnaire on a desktop computer, which 
required removing the headset. The first scatterplot was used for 
training and the participant viewed it for three minutes as the 
experimenter verbally instructed the participant, but the viewing 
time was restricted for two minutes for the remaining four 
scatterplots. In the Walking condition, participants were instructed 
to walk one full loop around the scatterplot, while in the Rotation 
condition participants were instructed to rotate the scatterplot 
completely around one time. Afterwards, participants in both 
conditions were allowed to view the scatterplot for the remaining 
amount of time using the assigned interaction technique. After the 
viewing time was complete, they completed the accompanying set 
of task questionnaires. Once all task sets were complete, the 
participants filled out a demographics questionnaire and two other 
data collection instruments (regarding cognitive absorption and 
presence), which we do not analyze here. 



3 RESULTS 

For analysis, we considered the mean of the results of the training 
task and the four graph tasks as our performance measures, on a 
per-task basis (see Table 1 for a summary). We tested each task 
using independent-sample T-tests with Welch’s correction for 
unequal variance (all reported statistics are so adjusted) to evaluate 
our hypothesis that performance in the walking condition would be 
superior. In measured point estimation performance, Walking (M = 
0.28) did not differ significantly from Rotation (M = 0.38), t (17.83) 
= -2.04, p = 0.97. Similarly, in measured correlation performance, 
walking (M = 0.55) did not differ significantly from Rotation (M = 
0.5), t (17.40 ) = 0.68, p = 0.25. For matching performance, walking 
(M = 0.64) also did not differ significantly from Rotation (M = 
0.64), t (17.44) = 0.00, p = 0.50. Therefore, we surprisingly found 
no evidence that walking results in superior comprehension of a 
data object in terms of our measures. We review potential reasons 
for these non-significant results in the Discussion section. 

 

3.1 Exploratory ANCOVAS 

For a more detailed analysis, we conducted a series of exploratory 
factorial (three-way) ANCOVAs using the per-graph performance 
measures as the dependent variables and the condition, mental 
rotation score, and graph reading score as the independent 
variables. This was intended to identify potential interactions 
between those factors and tasks which were not apparent in the 
aggregate scores. In total, 15 ANCOVAs were conducted (five 
datasets with three tasks each), and three had significant 
interactions. These significant interactions are detailed in the 
following subsections. Please note that while within the ANCOVA 
mental rotation scores were treated as continuous variables, for the 
purposes of tables and graphing we performed a median split on 
mental rotation score. 

The matching task of the Iris dataset scatterplot was the first 
significant interaction found. There was an interaction between 
condition and mental rotation, F(1, 12) = 35.53, p < .01., and a main 
effect for both condition, F(1, 12) = 13.14, p < .01, and mental 
rotation, F(1, 12) = 23.21, p < .01. As can be seen in Figure 4, 
Rotation condition users who had lower mental rotation scores also 
had lower scores on the matching task, wherein the walking 
condition there was little difference between low- and  

Figure 4: Interaction plot for the IRIS dataset, matching task. 

high-scoring mental rotation participants and performance. 
Essentially, participants in the walking condition did well at the 
task regardless of their mental rotation score, while the 
performance of participants in the Rotation condition was 
correlated with their mental rotation scores. 

For the correlation task of the Countries dataset scatterplot, there 
was an interaction between condition and mental rotation, F(1, 12) 
= 6.59, p = .03. Similar to the results of the Iris dataset and matching 
task, in the Rotation condition users who had lower mental rotation 
scores also had lower scores on the task (Figure 5). 

Figure 5:  Interaction plot for the Countries dataset, correlation 

task. 

For the matching task of the Countries dataset scatterplot, there 
was a significant three-way interaction between condition, mental 
rotation score, and graph reading score, F(1, 12) = 8.37, p = .01. As 
can be seen in Figure 6, low-spatial ability participants do better in 
the walking condition, but interestingly they do better even than 
high spatial ability users. This interaction is partly due to 
participants with high graph reading scores and high spatial ability 
scores having done poorly on the task in the walking condition, 
compared to participants with similar graph reading scores in the 
rotation condition. 

Figure 6: Interaction plot for the Countries dataset, correlation task. 

4 DISCUSSION 

In terms of our collected data, we did not find significant 
differences between conditions in terms of performance, but this 
may be due to the small sample size, rather than a lack of effect. 
However, in our exploratory ANCOVAs we found a relationship 
between condition and mental rotation in three sets of tasks and 
datasets, one of which also interacted with graph reading 
performance.  

Spatial abilities are known to have an impact in virtual tasks; for 
example, participants with low spatial abilities take longer and 
make more errors [17]. In our study, low spatial ability participants 
have more difficulty in the Rotation condition. This may because 
they are forced to adopt a response-based (egocentric) spatial 
learning strategy rather than an place-based (allocentric) strategy 
[12], as the 3D scatterplot environment lacks suitable points of 
reference. The Walking condition may support a response-based 
strategy much better than the Rotation condition because of 

Table 1: Summary statistics for dependent variables. 

  Correlation 

(proportion 

correct) 

Matching 

(proportion 

correct) 

Estimation (error 

as proportion of 

true value) 

Walking Mean 0.55 0.64 0.28 

 SD 0.16 0.17 0.11 

Rotation Mean 0.50 0.64 0.38 

 SD 0.13 0.14 0.12 



participant self-locomotion. We speculate high spatial ability 
participants are not affected by that limitation in the Rotation 
condition to the same degree, explaining the interactions found. 
High spatial ability participants then may have been able to exploit 
the superior rotation speed in the Rotation condition, explaining the 
better performance in that condition for some tasks. 

Overall, our the data points towards physical walking being a 
useful interaction approach to help low-spatial ability users in 
virtual environments, but either not making a strong difference or 
having a negative influence on high-spatial ability users. Notably, 
the combination of virtual and physical spaces appears to be 
important even in the context of abstract virtual environments that 
are not meant to simulate a real place. If this finding holds true in 
higher-power follow up studies, it has implications for the design 
of future VR systems for all users. For example, data visualizations 
intended for the broadest possible audience might be more effective 
using walking-type navigation despite the added space 
requirements. 

5 FUTURE WORK 

This pilot study was intended as a prelude to future experimental 
evaluations of different aspects of IVR, and provided valuable 
insights into the overall validity of our methods, procedures, and 
materials, particularly our custom IVR system. This study will lead 
to more rigorous evaluations of visualization and interactive 
techniques for the creation of IVR workbenches, such as those for 
environmental planning as discussed in Simpson et al. [18]. 
Naturally, as a pilot study, there were numerous discoveries that 
will augment future work. 

The measures of comprehension of representations will be 
further refined, to increase our construct validity, reflect more real-
world tasks, and further exploit the multidimensional aspects of 
representations. Notably, we will work towards an approach that 
will measure comprehension rather than simple memorization. As 
for other tasks, Amar et al. [19] provide a useful generalized list of 
potential data retrieval tasks: retrieve value, filter compute, derived 
value, find extremum, sort, determine range, characterize 
distribution, find anomalies, cluster, and correlate. There was a 
notable issue with the correlation task, in that the optimal solution 
(which nearly all participants adopted) was to rotate the graph in 
order to have a direct side-view of pairs of variables, essentially 
aligning their view until the 3D representation was functionally 2D. 
3D specific tasks from previous scatterplot studies will be 
integrated, such as the trivariate pattern detection task in Shovman 
et al. [9]. 

The specific measures of individual difference used here, graph 
reading and mental rotation ability, will also be revised in future 
studies. The graph reading pre-test did not produce reliable results, 
and another questionnaire will be used in follow-up studies. For the 
mental rotation test, half the participants had a perfect score, 
indicating a problematic ceiling effect which can be addressed by 
adding more questions and adding a time limit. Other spatial 
abilities measures will be explored, such as working spatial 
memory [20]. 

While we focus in this work on graph reading skill and spatial 
abilities, how individual differences of all types affect technology 
use more broadly of are of great research interest. These differences 
are important since they can drastically affect perception and 
operation of new technology in particular, but which traits are the 
most salient for particular tools or tasks in immersive environments 
has not been fully investigated. Some visualization research has 
established strong correlations between task strategy and 
personality traits, such as work by Ottely et al. [21] on the locus of 
control trait. Research on technology acceptance (e.g., [22]) has 
also examined all personality traits identified in the field of 

psychology such as the five-factor model on technology adoption 
and use. We believe individual differences research should inform 
future immersive studies and software design in order to maximize 
our understanding of how to create usable immersive analytics 
systems.  

For future iterations of the navigation conditions evaluated in this 
study, there are particular aspects that could be updated to increase 
the validity of the comparison. For example, the effective rotation 
speeds in the two conditions should be more similar in order to 
compare the types of interaction. In the rotation interaction, it took 
approximately 3 seconds to rotate the graph 360 degrees, which is 
much faster than users in the Walking condition could reasonably 
walk around the graph. Therefore, while available viewpoints of the 
scatterplot were constant, users in the Rotation condition could 
navigate between those views more quickly. This was particularly 
pertinent in the correlation task, where users in the Rotation 
condition could more easily “double-back” and review the 
scatterplot from the direction that revealed the given bivariate 
relationship. On the other hand, this also reveals practical 
implications: virtual rotation is not limited by the physical mobility 
of users, and can therefore be much faster. 

In the future, a greater variety of scatterplots will be used in order 
to increase the generalizability of the findings. In the current study, 
the Iris graph was the only one with very apparent clustering 
(clustering itself being an important property examined by other 
work [13]), while the other graphs had points spread across a wider 
range of values. While we did attempt to have a range of graphs in 
terms of the number of data points (32 to 192), three of the plots 
had 150 points or more, which may very well be beyond the point 
where most users can easily identify trends. More datasets with 
more varied patterns should be examined. 

The experimental software was intentionally simple, but several 
features would assist in running evaluations. For instance, ideally 
all tasks would be completed within an IVR environment. The 
requirement for the participant to remove the headset to fill out the 
task questionnaire was distracting, and may have affected 
performance. It also does not reflect likely future use-cases, where 
users will be performing many tasks entirely within in an IVR 
environment. 

6 CONCLUSIONS 

This study successfully demonstrated the feasibility of running 
human participants data visualization experiments using 
commercial consumer-grade virtual reality technologies. Users had 
no apparent difficulty with learning and operating the IVR system. 
While there does not appear to be a direct overall difference in 
memory of scatterplots between users who explored the scatterplots 
by walking and those who stood still and rotated the scatterplot with 
a controller, the exploratory analysis revealed individual 
differences can play a large role depending on the type of 
navigation. Mental rotation ability seems to largely determine 
performance in the Rotation conditions, but less so in the Walking 
condition. If this finding holds in higher-power follow up studies, 
this implies that despite the lack of overall difference, walking 
better supports users with low spatial abilities in IVR systems. As 
a pilot study, it succeeded in identifying weak points in the 
experimental framework that will be addressed in future work. 
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