Immersive Visualisation of Big Data for River Disaster Management

Matthew Ready*

Monash University

Tim Dwyer®
Monash University

ABSTRACT

We present a virtual reality visualisation of pre-recorded data from
approximately 18,000 weather sensors placed across Japan. Util-
ising the HTC Vive and the Unity engine, we developed a novel
visualisation that allows users to explore data from these sensors
in both a global and local context. We also investigated a variety
of methods for interaction using the Vive’s motion controllers. The
user is able to fly around the map, to open an interactive window for
any sensor, and to seek their position in time throughout the month
of recorded data.

Index Terms: K.6.1 [Management of Computing and Information
Systems]: Project and People Management—Life Cycle; K.7.m
[The Computing Profession]: Miscellaneous—Ethics

1 INTRODUCTION

The Japanese government makes a large amount of data from a wide
variety of weather sensors available to the public via a simple web
interface (http://www.river.go. jp/) provided by the Ministry
of Land, Infrastructure, Transport and Tourism (MLIT) [?]. Brows-
ing the data with this interface is performed through a list of small,
pre-defined maps on which links to the sensors are overlayed. Using
this system alone, it is impossible to get any “big picture” idea of
how the sensors appear on a state or even country level. Yet, the
website is intended to be used to assist in organizing a response to
potentially large scale natural disasters (storms and related flooding,
etc.). To investigate the utility of a broader perspective for disaster
management, we scraped data from the website over a period of a
month and brought the millions of collected sample points into a
virtual reality visualisation. Keeping the shortcomings of the website
in mind, we created an interface that allows both a “big picture”,
country-wide view while also allowing a the user to query each indi-
vidual sensor. Such a design should allow for great flexibility in data
analysis and interpretation. A recent publication highlighted the use
of local rainfall data from X band multi-parameter radar provided
by MLIT on the DIAS [?] system for disaster management, which
is a platform for global environmental big data [?]; however this
work used traditional webpage visualisations for the rainfall data.
We were interested in creating a novel application that presented
data in different ways to faciliate understanding and engagement of
novice users. Inspired by recent work in Immersive Analytics [?],
we also opted to explore the possibilities offered by new immersive
display and interaction technologies.

2 TECHNICAL OBSTACLES

Several technical obstacles had to be overcome in order to display
all the sensors on screen at once, whilst also keeping above the strict
90 FPS requirement to avoid VR induced motion sickness [?].

*e-mail: matt-r@hotmail.com
e-mail: Tim.Dwyer@monash.edu
*e-mail: jh.haga@aist.go.jp

Jason H. Haga*

National Institute of Advanced Industrial Science and Technology

Figure 1: A visualisation of recorded data points. Time runs from
top to bottom, 10 minutes per row. Each column represents a single
sensor, and the colour represents the type of sensor (green = water
quality, blue = river height, white = snow, light blue = rainfall, yellow =
shoreline, red = dam). A pixel is coloured when data was recorded,
and black when offline.

2.1 Custom database

The visualisation required some method of seeking to any time in
the recorded data and viewing the state of all sensors at that time.
Initial testing revealed that running such a query took approximately
10 seconds on the 6.9GB SQLite database that was scraped from the
website. Card et al. [?] claim that “perceptual processing” requires
aresponse time of under 10ms, so a faster data store was required.
While SQLite is excellent at answering many different kinds of
queries very quickly, we care only about one specific kind of query.
It was decided to create a simple custom binary database to store the
downloaded data.

In order to design a database format, understanding the data to be
stored is key. To this end, a simple visualisation of the sensor data
was created (Fig. 1). After careful inspection of this visualisation,
it was immediately seen that we had a very dense matrix of data.
Some sensors were offline or otherwise reported no data, but this
was for a very small amount of time. Thus, complex data structures
to compress empty space were overkill, and a very simple format
could be constructed.

Each sensor on the website consists of several ‘channels’. For
example, a rain sensor has a channel for both instantaneous and
cumulative rainfall. Each channel consists of a series of numbers
mixed with occasional null values which represent when the sensor
was offline. Values for each channel are updated on the website
every 10 minutes. For each channel, an appropriate storage class
is selected: 1 byte, 2 bytes or 4 bytes depending on the maximum
number of decimal places and the range of possible values. Then,
for each ten minute period in the recording, the current value of each
channel is encoded into a stream of bytes (a ‘row’). The database is
simply a concatenation of these rows. Since the length of a row is a
constant, running a query involves seeking to the correct location in
the file and reading exactly one row. Essentially, the custom database
becomes a greyscale image where bit depth varies in each column.

Initial testing revealed the same queries running against this cus-
tom database take ~7ms: 1500 times faster. Additionally, the custom
database format is also around 50 times smaller, at about 132MB.
Responsive, interactive seeking was now easily possible.

2.2 Bar visualisation

In order to display the sensors on the 3D map of Japan, it was
decided to use vertical bars that change in height to represent the
current value of their sensor. However, given the sheer number of

http://www.river.go.jp/

bars, there was not enough bandwidth between the GPU and CPU to
update the entire mesh of bars every frame that the heights change as
the user seeks through the data in time. Moreover, every bar has to
be constantly oriented to face the camera, otherwise the flat nature
of the bar is obvious (this technique is known as “billboarding”).
Recent GPUs have a feature known as ‘geometry shaders’. Such a
feature allows one to generate the mesh directly on the GPU without
any data needing to be transferred between the CPU and GPU, and
was a good choice here!. With this approach, only a small 18KB data
texture that contained the heights of all bars needed to be transferred
between the CPU and GPU when the heights changed.

2.3 Terrain

Due to development time limitations, the map of Japan is currently
rendered using a single instance of Unity’s built in terrain engine.
As aresult, the terrain’s heightmap is only 2049x2049 pixels, and
the terrain’s texture is only 8192x8192 pixels. This makes the terrain
look quite blurry when viewed close up. Because GPU support for
tiled resources is limited to Direct X 11.2 and above, we decided
to avoid them. As a result, only software emulation (swapping in
and out varying levels of the map as the camera moves around)
remained a viable option. Implementing this technology would
require additional time and is an important aspect of future work for
this application.

3 USER INTERACTION
3.1 Movement

We implemented two different methods of controlling user move-
ment in the visualisation.

* View orientation based movement: In this method, we used
the orientation of the user’s head to direct the movement. By
pushing up and down on the controller, the user could move
forwards and backwards with respect to where they were look-

ing.

Controller orientation based movement: In this method, we
used the orientation of the controller to direct the movement.
By pushing up and down on the controller, the user would be
pushed in whatever direction the controller was facing.

After testing both of these methods, we found that the controller
based movement felt more natural. Thus, in the virtual environment,
where you look has no effect on where you move, and it was much
easier to control where you wanted to go by simply pointing with
your hand.

3.2 Selection

A key feature of the visualisation was the ability to point at a sensor
with the motion controller to select it. Implementing this required
both an octree implementation (for locating the nearest sensor when
the user is not pointing directly at one), and leveraging Unity’s
internal physics engine for raycasting onto objects in the scene.

Objects in Unity’s physics engine are each represented by ‘collid-
ers’. There are various types of collider, however the one selected
for the bar visualisations was the capsule-shaped collider. Testing
revealed that it was impossible to update the heights of all 18k collid-
ers when the user seeked through the data in time without bringing
the frame-rate to a crawl. Unity’s physics engine does not seem to
be optimised for such frequent updates. To address this, a scheme
was devised to allow fast raycasting using Unity’s physics engine,
but without having to resize all the colliders (Fig. 2).

'While a simple vertex shader could suffice, Unity vertex count limits
would require splitting the mesh into several pieces adding unnecessary
complexity.

Physical Visible
collider s
(Staring at max possible height) helght
Ray ,i\ S~ N o NN =s
V\\ Hit y]
R o,
Y Y

[R pp——

2. Resize the hit collider to its real
size, then repeat raycast

gy 2TV TN Ty
« 0

Hit

1. Perform a normal raycast

,--------------
——————————

-2 . S — —

3. Repeat step 2 until the same 4. Restore all changed colliders
collider is hit twice. This is

the real hit.

to their maximums,
ready for the next raycast

Figure 2: The simple raycasting procedure used to deal with Unity’s
inability to deal with frequent updates

In this scheme, we do not resize the visualised bar’s collider to
the bar’s actual height, but instead set all colliders to the maximum
height the visualised bar can ever reach. In this case, a raycast
will usually hit the empty space above the visible portion of a bar,
when instead it should pass through it. Clearly this is not the correct
behaviour, thus when a collider is hit with a raycast, we resize the
collider to the correct size (matching the bar visuals) and repeat the
raycast. The second raycast will pass straight through the empty
space, and hit the next collider behind it. We then repeat this process
at the next collider. However, if the raycast were to instead hit
the first collider again after it has been resized, then we know that
the raycast does indeed terminate at this bar visualisation. In other
words, this approach provides an admissible heuristic for the true
raycast.

3.3 Physical Windows

Another major feature of the visualisation was the ability to see
individual charts of a sensor’s data over time. This involved a variety
of difficulties:

* Unity has no way to draw a set of lines in it’s Ul system. A
custom UI component had to be created that could directly
draw lines to vertex/index buffer objects.

» It was decided that if a sensor is offline for a period of less
than one hour, the data at each ten minute period during this
timespan should be an interpolation of the two surrounding
data points. In this case, such interpolated points are shown
in grey to differentiate them from real points. There were a
number of edge cases involved that made this necessary in the
chart visualisation.

¢ The chart had to be able to be zoomed in and out.

Cumulative Rainfall

S%(m
B 58 (kfr) o

£ 8 Ckfir) oo

Instantaneous Rainfall

Water Height

e

ToaQ

Figure 3: Several charts available to view. Note that the yellow outline
of the controller is a visual cue indicating that the user can grab the
selected chart and pull it out of the stack.

* The range of the chart and where to draw the axis ticks (the
numbers on an axis) had to be decided.

* The charts needed the flexibility of physical manipulation
in the virtual space (i.e. they could be grabbed and moved
around), but they also needed to stay in a fixed position when
placed in the virtual space.

* The buttons in Unity’s Ul system needed to be clickable by
pointing and grabbing with the motion controller.

With this design, users are able to point at any of the sensors
and press the controller’s trigger to open a list of charts for that
sensor (Fig. 3). The other controller is then used to grab and pull
out charts that the user is interested in, which can then be placed
around the user in virtual space. When the trigger is released, any
charts that have not been pulled out will then disappear. The charts
placed in virtual space float in mid-air wherever the user placed
them, and remain there relative to the user’s position (including
when the user moves, Fig. 4). To remove a chart, the user simply
grabs it, throws it away, and it explodes as a firework to increase
the level of engagement. This would allow disaster management
professionals to maintain a global and localized view at the same
time when viewing the data and making decisions.

3.3.1 Elastic ropes

Once a chart had been created, it was difficult to remember which
geolocation point it came from. It was decided that the user should
be able to toggle the visibility of a line from the chart to the sen-
sor. Rather than drawing a straight line, a more animated, physical
approach was taken to increase user engagement.

First, a cubic Beézier is drawn to connect the chart to its sensor.
This curve is approximated with line segments, and then perturbed
(Fig. 5). During each frame, 6 springs connected to either side of
each vertex to 6 neighbouring vertices are simulated using Hooke’s
law with an appropriate target length. Note that a single spring is
not sufficient: the band will often become extremely pointed and
will zig-zag when vertices become too close (Fig. 6). The effect

Instantaneous Rainfall

Figure 4: A view of the virtual space with two charts a user has placed
in space. The geolocation lines have been toggled on to show which
sensors are being referred to. The main visualisation of sensors in
Japan appears in the background.

Chart
N Create cubic bezier
Sensor

Approximate with line segments

Relax approximation to make
points equidistant

Purturb to add animation
when simulated

Figure 5: Construction of the line’s initial state

produces a springy elastic band type connection between the chart
and sensor that users enjoy playing with (Fig. 7).

4 RESULTS

To investigate the visualisation’s effectiveness, we asked people who
had not seen the application during development to attempt to use
the it and we offer here an anecdotal report of their responses and
our observations of their behaviour while using the system. This
very informal user testing demonstrated that users struggled with
moving around in the visualisation. In particular, users will keep
their body in a fixed orientation, only looking up and down. As a
result, using the controllers to move around the visualisation was
difficult. However, once it was demonstrated that you are free to walk
and look around in all directions, this problem appeared to quickly
subside. Some users also appeared to have difficultly with the two
controllers i.e. one controller for movement, the other controller
for data seeking. We believe that the reason for this stems from, in
part, the lack of a simple tutorial for the application, guiding the
users through the controls. Nevertheless, it was encouraging to see
even users with no prior experience with VR were able to grasp the
concepts and manipulate the visualisation with only a small amount
of direction. Users did appear to enjoy the ability to view the sensors
on a country-wide and local level simultaneously.

In the future, it would be of great help to receive the insight and
advice of domain experts. Only after speaking with them will we
be better able to discern exactly what kinds of tasks they need to

Connecting vertices only
to immediate neighbours
leads to zig-zagging

Connecting vertices
to many neighbours
smooths the simulation

Compressed state @—@—@—@ o——=0

Expanded state N /=\

Figure 6: Additional springs help to smooth the simulation

ez

Figure 7: The elastic ropes in the visualisation, joining the sensor
chart to the sensor itself.

complete, and how we might address their concerns using VR.

5 CONCLUSION

Creating a visualisation that is both useful and usable in VR was
quite difficult. Maintaining a 90FPS to avoid VR motion sickness
while also trying to place as much data on screen as possible intro-
duced several new challenges. Even with only about a month of
simple time-series data, several gigabytes had to be processed. It was
only through investing additional effort in a custom database solution
that the vision of the project could be achieved. The juxtapostion
of 2D (i.e chart) and 3D (country-wide) versions of the sensor data
appears to be quite successful with intial users. In addressing many
of the challenges, we believe this work provides some important
insights into working with big data in virtual reality environments.
However, while the visualisation may seem a success from our point
of view, only through testing with real domain experts will we be
able to identify areas that need improvement and extension. It is
hoped that the project in its current state can be used as a starting
point with which to engage officials from the relevant areas in the
Japanese government. They will likely be able to provide us with
the necessary input to establish more novel and domain specific
visualisation techniques in the project.

ACKNOWLEDGMENTS

This work was performed as part of the Monash Undergraduate Re-
search Projects Abroad (MURPA) and the AIST Student Internship
Program. It was supported in part by the AIST ICT International
Team.

REFERENCES

[1] P Isenberg, F. Heimerl, S. Koch, T. Isenberg, P. Xu, C. Stolper, M. Sedl-
mair, J. Chen, T. Moller, and J. Stasko. vispubdata.org: A Metadata

(2]

(3]
(4]

[5]

(6]

[7

—

Collection about IEEE Visualization (VIS) Publications. IEEE Trans-
actions on Visualization and Computer Graphics, 23, 2017. To appear.
doi: 10.1109/TVCG.2016.2615308

G. Kindlmann. Semi-automatic generation of transfer functions for
direct volume rendering. Master’s thesis, Cornell University, USA,
1999.

Kitware, Inc. The Visualization Toolkit User’s Guide, January 2003.
W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution
3D surface construction algorithm. SIGGRAPH Computer Graphics,
21(4):163-169, Aug. 1987. doi: 10.1145/37402.37422

N. Max. Optical models for direct volume rendering. IEEE Transactions
on Visualization and Computer Graphics, 1(2):99-108, June 1995. doi:
10.1109/2945.468400

G. M. Nielson and B. Hamann. The asymptotic decider: Removing the
ambiguity in marching cubes. In Proc. Visualization, pp. 83-91. IEEE
Computer Society, Los Alamitos, 1991. doi: 10.1109/VISUAL.1991.
175782

G. Wyvill, C. McPheeters, and B. Wyvill. Data structure for soft ob-
jects. The Visual Computer, 2(4):227-234, Aug. 1986. doi: 10.1007/
BF01900346

	Introduction
	Technical obstacles
	Custom database
	Bar visualisation
	Terrain

	User Interaction
	Movement
	Selection
	Physical Windows
	Elastic ropes

	Results
	Conclusion

