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Abstrakt

Computergestützes Suchen in großen Datenmengen gehört in vielen Bereichen der
heutigen Informationsgesellschaft zum Alltag. Facettennavigation, auch genannt Fa-
cettensuche, ist eine effiziente und einfache Methode um gezielt nach Objekten zu
suchen und in großen Datenmengen zu browsen. Facetten sind Eigenschaften von
Objekten anhand derer die Objekte gefiltert werden können. Verschiedene Techniken
existieren, die den Nutzer bei der Facettennavigation unterstützen. Diese reichen je-
doch oft nicht aus um größere Aufgaben damit zu erledigen. Strukturen innerhalb der
Daten und zwischen den Facetten, die dem Nutzer helfen würden präzisere Suchan-
fragen zu stellen, werden gar nicht oder nur ansatzweise genutzt und dargestellt.

Diese Arbeit entwickelt Facettice, ein Interface zur visuellen Unterstützung von
Facettennavigation und Datananalyse mittels interaktiven Hassediagrammen. Im
Vordergrund einer Integration beider Technologien stehen folgende Punkte (1) Vi-
sualisierung von Hassediagrammen, (2) Such-History-Visualisierung, (3) Query-vor-
schau und (4) sukzessive Konstruktion von Hassediagrammen.

Entwickelt wurden die zwei interaktive Visualisierungen, Facet Lattice und Big Smart
Lattice, die die beschriebenen Punkte umsetzen. Eine prototypische Implementierung
erlaubt das browsen und analysieren von Realdaten und liefert wertvolles Feedback
für weitere Entwicklungen.
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1 Introduction

In modern information society, computer supported search within large data sets has
become an everyday practice. The enormous amount of data and the easy acces-
sibility do not lower the efforts in finding the right items. Yet, projects like Linking
Open Data and Freebase are connecting entire data networks together creating the
Semantic Web, the web of data.

Searching in such data sets is done by posing various queries. Focalized search is
about retrieving objects, of which the person has a clear idea. In contrast, ex-
ploratory search is browsing, following links and explore the data, without such a
precise intention.

Two major problems must be solved by computer interfaces in order to support
exploration and focalized search, which often accompanies each other. The interface
has to provide tools for formulating queries as well as for guiding the user. It also
should keep track of his navigation.

A technique that supports both, is faceted search, also called faceted browsing or
faceted navigation. It is widely used and based on facets and values. A facet
represents a characteristic of objects, for example color which can have the possible
values red, blue and yellow. Another facet would be price which has a continuous
range of values. Every object in the data base can be classified under multiple facets
and values. By specifying the facet values that a wanted object must satisfy, a query
such as color:=red & size:=small is created and send to the data base.

While browsing, the user changes the query several times and obtains different sets
of objects. Query preview aims to guide the user by indicating the result of a new
query before the query has been posed. Although query preview techniques as well
as navigation support do exist, they are insufficient for search and exploration within
large data sets. For a comprehensive exploration, which contains many successive
queries and changing search goals, advanced techniques and interfaces are necessary.
They need to support query preview, browsing history and should additionally allow
the user to keep an overview over his retrieved search results. All these techniques
aim to provide additional information about the data set. The more the user knows
about the data set and possible inner structures, the better he is able to direct his
search and exploration.

Formal Concept Analysis is a data mining technique that reflects such implicit inner
structures of data in a way they can be exploited to support faceted navigation. For-
mal Concept Analysis classifies and groups objects according to their characteristics.
Each group corresponds to one result set of a faceted navigation. The compound
of all these groups, or concepts, called concept lattice, finally represents the whole
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1 Introduction

search and navigation space. The relations which exist among those concepts de-
scribe navigation paths the user takes while reformulating his query.

The motivation for this thesis is to develop an interactive visualization of concept
lattices, which should guide the user in a faceted navigation. An integration of con-
cept lattices and facet navigation should help the user to keep the overview over
search results and posed queries as well as to assist him posing the right queries.
Also, the user should be able to make compromises in case of an unsatisfying search
result. Beyond supporting search and exploration, visualizations of concept lattices
empower experts to analyze the data and to identify trends, correlations and impli-
cations. Faceted navigation should be employed to chose the particular data that
needs to be analyzed. The possibility to analyze data also supports the normal user
in exploration and search. General visualizations for concept lattices exist, but there
are no comprehensive approaches in terms of information visualization.

Faceted navigation as well as Formal Concept Analysis are explained in Chapter 2 of
this thesis, together with common search, exploration and analysis tasks.

In order to approach an interface that exploits the potential of an integration, com-
mon visualization and navigation techniques of faceted browsers as well as tools for
Formal Concept Analysis and concept lattice visualizations are going to be analyzed
in Chapter 3. Only few existing projects do approach an integration of both. The
analysis of related work should inspire a general comparison of faceted navigation
and Formal Concept Analysis in Chapter 4. Both technologies are compared by
different criteria such as data structure, navigation and interface. The comparison
is necessary, because although implicit links between both technologies have been
stated, only one explicit relation exists. The comparison should reveal major inte-
gration points which are the basis for the development of an integrative interface in
Chapter 6.

In order to exemplify and getting valuable feedback for the visualizations, a real-
world data set from a taxonomy on visualizations is used and explained in Chapter
5. Particular use cases for a search, exploration and analysis will also be described
and tested by a prototypical implementation of the concepts.

Finally, Chapter 6 of this thesis will develop Facettice, an interface that integrates
faceted navigation and concept lattices. It is going to comprise four different views
on the data whereby two of them are interactive lattice visualizations: Facet Lattices
and Big Smart Lattice. Facet Lattices are an approach to visualize the realization
of facets within the data set. The Big Smart Lattice is a general navigation envi-
ronment. Because the complete concept lattice for the data set is too big to be
visualized on the whole, a major emphasis must be done on reducing the shown lat-
tice. All views will be linked together so that the user can chose the most appropriate
one for the current purpose.

Chapter 7 will explain implementation details and demonstrate the use of Facettice
by means of real-world data.

The thesis closes with a discussion on the benefits and limitations of Facettice and
highlights major aspects for future extension.
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2 Theoretical Foundations

This chapter explains faceted navigation and Formal Concept Analysis (FCA). Sec-
tion 2.1 gives an overview on general search, exploration and analysis tasks. The three
terms are described as different levels of the information retrieval process. Section
2.2 describes faceted navigation and distinguishes it from associated terms such as
faceted classification and dynamic taxonomies. The section points out strengths and
limitations of faceted navigation. Section 2.3 starts with the mathematical principles
and formalisms, used throughout this paper. The section then introduces concept
lattices as one of two possibilities to visualize a formal context that is created by
FCA. Also for concept lattices, strengths and limitations are described. Furthermore,
the landscape as a metaphor for information retrieval with FCA is explained.

2.1 Search, Exploration and Data Analysis

2.1.1 Information Retrieval

The term search origins from french chercier, which also means explore. This, in
turn, comes from latin circare and means "going around in circles", a metaphor
that is very familiar and can be understood as encircling something to catch it. The
Encarta Dictionary defines search as "to examine something thoroughly [ and (B.B.)]
discover something by examination"1. A definition in the Cambridge Dictionary of
American English is "to look somewhere carefully in order to find something"2.

The previous definitions reveal that it is hard to find a universal and exact description
of what is understood as search. In terms of computers and digital interfaces, fine
grained processes and interaction steps need to be defined. The stratified model of
information retrieval interaction [Saracevic, 1997] describes the process of informa-
tion retrieval (IR) by dividing it into three kinds of activities, which can be performed
in parallel. Figure 2.1 shows these activities, Lookup, Learn and Investigate, which
are increasing in their complexity. Lookup is best described as fact retrieval and the
search for items of which one has a vague idea. It also describes navigation with
interfaces using predefined navigation techniques, such as menus and links. Lookup
tasks are basic and heavily supported by the computer, considering keyword search,
providing navigation interfaces, scanning databases and presenting results.

1http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=3-
&search=search

2http://dictionary.cambridge.org/dictionary/british/search 1
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2 Theoretical Foundations

Figure 2.1: The information retrieval interaction process comprises three levels which are
lookup, learn and investigate. The terms beneath each cloud describe particular tasks. Ex-
ploratory search is performed at the two upper layers as indicated by the yellow shape.

The next layer, Learn, refers to learning in general. It is a cognitive processing of
information, including interpretation, comparison and aggregation. It needs repe-
tition and ties facts together, and therefore directly involves the user into the IR
process. Since it is an iterative process, information from various sources, views and
of different content is aggregated and interpreted in context.

The highest layer in the information retrieval interaction model is called Investigation.
It can be best described with analyzing and evaluating of information to draw new
and own conclusions (cf. [Marchionini, 2006, p.43]).

Grounded on the division into the three activities Lookup, Learn and Investigate,
Marchionini refers to Learn and Investigate as exploratory search as opposed to
Lookup. Sacco opposes the term exploratory search to focalized search (cf. [Sacco
and Tzitzikas, 2009, p.3]). By exploratory search he refers to browsing and explore
relationships in a database. Basically it means the same as Marchionini with Learn
and Investigate. Focalized search is described as quickly retrieving objects and can
be compared to what Marchionini calls Lookup.

The difference between focalized and exploratory search lies in the involvement of the
human as active part of the information retrieval process. While Lookup comprises
basic tasks whose results depend on algorithms and user specified search terms, the
results of an exploratory search strongly depend on the knowledge and skills of the
user. Focalized search needs systems for navigation, query specification and result
representation, whereas an exploratory search must be supported by personalization,
search history, visualization and data mining methods. So far, Sacco and Marchionini
use equal terms to describe a similar model of the information retrieval process. This

4



2.1 Search, Exploration and Data Analysis

process is characterized by tasks of different complexity and purposes.

In addition to the previous terminology, Sacco uses a second classification of the
search process. He defines object-seeking, knowledge-seeking and wisdom-seeking as
exploratory patterns of an exploratory search (cf. [Sacco and Tzitzikas, 2009, p.3ff]).
By object-seeking, Sacco refers to the quick retrieval of objects from databases using
queries, document retrieval and text mining techniques. These object-seeking tasks
also cover Marchionini’s Lookup tasks, which indicates that a hard border between
focalized search and exploratory search is hard to find.

Knowledge-seeking means to increase knowledge about a certain topic and requires
a more comprehensive engagement of the user than object retrieval. It intends to
widen the user’s knowledge about a certain subject instead of retrieving just facts
and objects. This pattern directly meets Marchionini’s Learn.

Investigation tasks are called wisdom-seeking in Sacco’s terminology. He describes
the same tasks and conditions as Machionini.

The comparison of Machnionini’s model to structure the information retrieval process
and Sacco’s model, shows many similarities between them. Focalized search equals
Lookup, exploratory search comprises learn and investigate activities and object-
seeking, wisdom-seeking and knowledge-seeking can be compared to lookup, learn
and investigate.

These analogies suggest the profoundness of both models. Whenever referring to
these models used Sacco’s terminology of object-seeking, knowledge-seeking and
wisdom-seeking, as well as focalized search is used.

2.1.2 The Information Seeking Process

Marchionini’s and Sacco’s models explain what types of search exists, how search,
exploration and analysis relate and what tasks are performed in each case. Hence, it
is a taxonomy rather than the description of a process. For designing a user interface
for those three activities, it is important to know what tasks needs to be supported.
But, in the same manner it is important to know how tasks needs to be supported,
that is, in which order the user is going to do what.

An easy and widely adapted principle for describing search behavior is Shneiderman’s
"Overview first, zoom and filter, then details-on-demand" (cf. [Shneiderman, 1996]).
The principle, originally referring to information visualization interfaces, also implies a
search and exploration process. In information visualization, Shneiderman’s principle
aims at designing graphical solutions for showing an overview of the data, navigating
into them and explore, and obtain details on particular objects.

In contrast to Marchionini and Sacco whose model structures information seeking
into almost parallel tasks, Shneiderman’s emphasizes a sequential process. Although
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2 Theoretical Foundations

the visual sense is parallel in processing information, graphics can easily become
overloaded. Hence, it is to be distinguished between important and less important
information. The same holds for a search process and a graphical overview must
serve for orientation within the data, rather than actual results.

The user subsequently narrows down his potential result set and examines remaining
objects in detail. In addition to that, Shneiderman defines seven tasks for informa-
tion visualization, which are overview, filter, zoom, detail-on-demand, relate, history
and extract. Those tasks are an abstraction of Marchionini’s and Sacco’s model by
referring to similar tasks. But, they can be read in a processual order; the already
mentioned overview, zoom and filter, then details-on-demand is followed by a relation
of known facts. A history tracks all visited items and hence the search and explo-
ration process. The last step Shneiderman defines, extract, describes the ability of
visualization interfaces to save portions of data so that the user can access it later.
In an information retrieval process, extracting refers to the essential information.

Shneiderman’ process is very simple but imprecise in to describe a search and explo-
ration process. He therefore defines another process for information seeking, which
comprises four steps (cf. [Shneiderman et al., 1997]). The steps are:

1. Query Formulation,

2. Action (running the query),

3. Review of Results, and

4. Refinement.

Here, he only describes a search, rather than an exploration. It is a far simple input-
output and iteration process. Only the reviewing of results includes higher cognitive
work. However, a similar but more detailed model is defined by Marchionini and
White and comprises the following steps (cf. [Marchionini and White, 2008]).

1. Recognizing a need for information,

2. Accepting the challenge to take action to fulfill the need,

3. Formulating the problem,

4. Expressing the information need in a search system,

5. Examination of the results,

6. Reformulation of the problem and its expression, and

7. Use of the results.

The same processes is shown in Figure 2.2 while emphasizing the step of iteration.

Iteration has been identified as essential part of all models for an information seeking
process. While iterating and posing new queries to the system, the user’s intention
can change and new search goals can be of interest. An other point, not addressed
explicitly by Machionini, White and Shneiderman, is the consideration of all retrieved
result sets together. The berry-picking model considers all results of each search as

6
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Figure 2.2: A standard model of the information seeking process. The model is reflects the
ideas of Machionini and White, and Shneiderman.

the overall-result of a search (cf. [Bates, 1993]). Figure 2.3 illustrates the iteration
of posing a query and retrieve documents. Thus, every query is just a step in a larger
information seeking process. By that, the berry-picking model reminds of a browsing
process.

Definitions of browsing, however, are as divergent as for search. Machionini de-
scribes browsing as investigative task. He argues that browsing is about knowing
where and how to search. This includes to gather an overview of possibilities and
order results according to their relevance for the search. A third author refers to the
schema in Figure 2.1 and uses the terms way finding and wander in order to describe
browsing and exploration [Morville, 2010]. Hearst describes browsing as follow links,
switch between views, scan and select (cf. [Hearst, 2009]). In essence, browsing can
be described as iterative and exploratory, to find interesting information and foster
serendipity.

2.1.3 Visual Data Analysis

The last chapter described models and processes for searching browsing and explo-
ration, mainly located at the two lower levels of the information retrieval model in
Figure 2.1. The third and highest level is investigation and includes tasks like anal-
ysis, synthesis, evaluation and discovery, which are mainly supported by interactive
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Figure 2.3: The berry-pinking model describes information seeking as an iterative process.
Q0−Q5 are queries which yield different results (represented by documents-symbols).

visualizations. This section gives a brief overview of visual data analysis.

In comparison to information visualization, visual analytics focuses on data mining
methods, which analyze data before it is shown. That is, visualizations in visual
analytics rely more on meta data about the data, rather than the data itself. It
helps to discover trends, clusters and outliers in data sets, implicit relations and
dependencies. Besides the application of extended data mining and analysis tasks
before visualizing the data, visual analytics emphasizes the process of analysis on the
user side. It defines the whole data analysis process as the effective sharing of labour
between machine and human. While computers are used for mathematical analysis,
humans are capable of evaluating and making decisions. Another term Exploratory
Data Analysis (EDA) refers to the same process and is described in TUCKEY 1977
and ANDRIENKO AND ANDRIENKO 2006. Exploratory Data Analysis is described as
a four-step process comprising the following steps (cf. [Andrienko and Andrienko,
2006, p.]):

1. formulate questions,

2. find and chose methods,

3. detect patterns/relations,

4. evaluate and decide, and

5. iterate.

Questions are related to a certain problem such as "is there a correlation between
variable A and B? And if, how big is it?". Then a particular method needs to be
chosen that creates a picture of correlation within data. After detecting patterns
and relations, they must be evaluated and investigated.

A general overview of the visual analysis process is shown in Figure 2.4. Data first is
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Figure 2.4: Schema of the visual analysis process. A major focus of visual analytics is on
analyzing the data before it is presented. By iteration, the user changes analyzing methods
and compares the results,

analyzed and mined by algorithms and then visualized. This information is not just
pure data from the database but is enhanced by meta data, which results from an
analytical processing. Typical analyzing and data mining algorithms are cluster and
pattern analysis, association rule mining, correlation analysis estimation of trends,and
supervised learning (cf. [Keim et al., 2008]). The goal is to enable the user to gain
new knowledge which he can use to create questions and hypothesis, which leads
to subsequent iteration in analysis and exploration. This last point is especially
emphasized by Tukey (cf. [Tukey, 1977]) and underlines the processual character of
analysis.

Because an analysis is not possible without exact knowledge of the data, visual
analysis often involves experts from other domains into the design of algorithms
and interfaces. That way, it is highly interdisciplinary. But, also among computer
scientists for developing appropriate solutions for data management, data mining,
visualization, human computer interaction and evaluation methods.

JONES ET AL. introduced the term Human Information Interaction (HII). While human
computer interaction depends on the technical interaction media such as mouse or
multi-touch displays, HII emphasizes device independence (cf. [Jones et al., 2006]).
This is trivial when it comes to working with distributed information in networks
where devices do variate but the access to information happens by the similar software
interfaces. In the context of this work the main point about HII is about perceiving
information as intractable in the same way it is visualizable.
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2.2 Faceted Navigation

Faceted navigation is a navigation principle that aims for quickly retrieving a set
of objects which meet a certain set of characteristics. It works for multidimen-
sional data and is used for focalized search as well as exploratory search. The terms
faceted search and faceted browsing are often used as synonyms for describing this
process (cf. [Sacco and Tzitzikas, 2009] [Polowinski, 2009]). Common applications
domains for faceted browsing are e-commerce application, library systems, multime-
dia databases and e-gouvernment (cf. [Sacco and Tzitzikas, 2009, p.263ff]).

This section explains what faceted data is, how faceted navigation work and what
techniques are applied to support the user.

2.2.1 Faceted Data

The term facet in the context of information management was first used by Ran-
ganathan to classify books in a library ( cf. [Ranganathan, 1962]). He tried to solve
the problem that many books can be classified under different terms and by different
schemes. The facets he used were personality, matter, energy, space and time. He
classified each book in these five categories. His intention was to support the user
in finding books by providing different classification schemes as well as keeping the
categorization system flexible for extension.

In computer science the term multidimensional data is often used to refer to data
that can be classified by multiple taxonomies (cf. [Andrienko and Andrienko, 2006]).
In faceted navigation, a dimension is called facet and divides into several facet values.
Since a facet is considered a classification, facet values are also called concepts. Data
objects are classified under concepts from different facets assigned. Although, it is
sometimes claimed that every item can be classified under just one single concept
per facet, this restriction does not hold for real world data (cf. [Priss, 2000a] [Priss,
2008]). A typical example for faceted data are cars. Cars differ in color, weight,
speed and fuel consumption.

A faceted classification helps transforming heterogenous data into semi-structured.
Thereby, a faceted classification just classifies objects but neither relates them di-
rectly nor states further logical restrictions on the facets, as it can be done with
ontologies(cf. [Gruber, 2009]).

Figure 2.5 demonstrates the general character of multidimensional data by two com-
mon visualizations; parallel coordinates and scatterplots. In parallel coordinates, each
vertical line represents a dimension which is divided according to its values. A colored
line from the left to the right represents an object in the data base. The problem
with scatterplots is that they can compare only two to four dimensions at once. A
scatterplot matrix shows all scatterplots that exist by combining each facet with each.
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Figure 2.5: Two possibilities of visualizing multi dimensional data. The left screenshot shows
parallel coordinates [McDonnell and Mueller, 2008] and the right one shows a scatterplot
matrix [Elmqvist et al., 2008]. The matrix consists of scatterplots comparing each dimension
(facet) to each.

Figure 2.6: Demonstration of the query behavior of facets.

2.2.2 Navigation and Querying

Navigation within faceted data is done by restricting facets on their values. Selected
facet values represent a boolean query. Values from different facets are combined by
conjunction, values the same facet are combined by disjunction. Figure 2.6 gives the
example for two facets color and size. The user specified the values red, blue
and large and the retrieved objects correspond to the query (red OR yellow)
and large. However, the user does not need to form this boolean query by hand.
Moreover, he selects and deselects values from facets and the query is created by the
rules in Figure 2.6. The user refines his query in an iterative manner. An important
point about this refinement is that the search interface ought to provide feedback
about further search options, i.e. omit facets whose selection would lead to an empty
search result.

Yee et al. describe the process of a faceted search in three steps (cf. [Yee et al.,
2003] ):

1. Opening: gain an overview over facets and values,

2. Middle Game: iteratively narrowing down the result set by selecting facet val-
ues, and
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3. End Game: Observe and evaluate the results.

The process is very similar to Shneiderman’s and Marchionini and White’s processes
on search (cf. Section 2.1.2). Focalized search as well as browsing and exploration in
terms of an exploratory search are best supported by the faceted navigation principle.
Facets and values guide the user through the data set and the query mechanism
provides an intuitive tool.

2.2.3 Dynamic Taxonomies

Facets as well as facet values can be put into a hierarchical order. Such a hierarchy
usually consists of facets whose children are values as in the example in Figure 2.6.
An extension is to define facets whose range is a value taxonomy, that is, the facet
values form a taxonomy. This taxonomy is usually defined by the is-a relation.
Simplified, a Dresden citizen is a saxon, is a german, is a european. There are three
types of taxonomies (cf. [Sacco and Tzitzikas, 2009, p.47]) presented in the list:

• Static mono-dimensional taxonomies are simple taxonomies. There is only
one taxonomy defined on the data set and every item is classified under one
concept, as it is the case in biology. Objects can be classified under every
concept of the taxonomy.

• Multidimensional (static) taxonomies without concept composition describe
multiple independent taxonomies on the same set of items. An item is defined
under exactly one concept in each taxonomy and each taxonomy represents
one facet. It is not possible to combine concepts as demonstrated in Figure
2.6.

• Multidimensional taxonomies with concept composition are also known as dy-
namic taxonomies (cf. [Sacco, 2000,Sacco, 2007,Sacco and Tzitzikas, 2009]).
A dynamic taxonomy is a taxonomy that allows an object to be classified under
arbitrarily concepts. Such taxonomies allow concept composition by boolean
queries, that is they calculate new concepts on demand.

While the basic idea of faceted search is multiple facets and a faceted classifica-
tion, dynamic taxonomies are a user-centric approach to faceted search. A dynamic
taxonomy is adapted each time the user changes the query, that is, she selects or
deselects a facet value. By the adaptation, those taxonomy concepts, that do not
occur within the new result set, are excluded from the resulting reduced taxonomy.
Figure 2.7 shows the adaptation process. Items 2 and 3 are considered the extent
of concept c , while the concept c, d and f are the intent of object 33. Thus, all
concepts are removed from the taxonomy that are not part of the intent of the
extent of c . As seen from Figure 2.7, the user can only select further concepts that
are present. This prevents her from empty result sets (for example, b AND f) and

3Sacco et al. distinguish between shallow extension that comprise only the direct items assigned to
a concept, and deep extension by which all items of all child concepts are meant (cf. [Sacco and
Tzitzikas, 2009, p.6].
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Figure 2.7: Dynamic Taxonomies are adapted when a facet value is selectd. On the left, the
complete taxonomy is shown with the concept c that is going to be selected by the user.
The right tree is the adapted taxonomy containing only those concepts that occur in the
extension of c . The taxonomy on the left has a resolution of 1.5 items per concept.

makes further selection possibilities clearer. In the right taxonomy in the example
only d or f can be further selected.

An other advantage of dynamic taxonomies in comparison to static ones, is the
maximum resolution. This value indicates how many items on average remain under
each concept. Sacco et al. report a maximum resolution of 10-20 in order to provide
a user friendly taxonomy (cf. [Sacco, 2000, p.474]). Due to concept composition,
dynamic taxonomies achieve a better maximum resolution, than taxonomies without
concept composition.

2.2.4 Interface and Benefits

faceted browsers are applications that enable a user to perform faceted search. Pop-
ular examples are Flamenco [fla, ], Longwell [lon, ], Exhibit [exh, ] and Camelis
(cf. [Ferré, 2009]). The most common Interface for faceted browsers are lists of
facet values grouped according their facets. This simple approach has been extended
by many others. Some solutions provide sliders for selecting ranges, improving the
visualization of facet taxonomies (cf. [Ferré, 2009]), improving the facet manage-
ment (cf. [Dachselt et al., 2008]) or proving feedback about the data behind the
corresponding facets (cf. [Stefaner and Müller, 2007]). Chapter 3 contains examples
of advanced faceted browser interfaces.

General components of a faceted browser are (1) facet lists, (2) breadcrumbs and
(3) result representation as represented in Figure 2.8. The facet lists shown on the
left with their values. They serve as presentation of the taxonomy as well as for
selecting the facet values. If a dynamic taxonomy is used, the lists are adapted and
unused concepts are removed or faded (cf. [Polowinski, 2009]). The example also
shows numbers next to each facet. They indicate how many objects remain under
this concept.
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Figure 2.8: Components of a faceted browser interface at the Flamenco browser. Left are
facets and values and on the right side are the results presented. Above the results is the
breadcrumb section, comprising two values.

Breadcrumbs serve as search history and show the values the user has selected
(cf. [Hearst, 2009, p.163ff]). In Figure 2.8 they are shown above the results and
categorized by their facet. Search results are usually presented in a list and can be
grouped according different facets (cf. [Polowinski, 2009]).

Challenges for future interfaces for faceted browsing are novel presentation tech-
niques for facets and advanced mechanisms for building complex boolean queries
(cf. [Polowinski, 2009]) as well as dealing with many facets and semantic web data.
The latter is generic data, which strongly influences the interface design. In reference
to the information seeking process, a big challenge lies in extending faceted browsing
to the stage of investigation.

The main advantages of faceted browsing and dynamic taxonomies in order to search
and browse large data sets are summarized in the following:

• Simple but powerful way for describing and classifying data

• Still works in very large data sets

• Data overview and navigation guidance due to predefined facets.

• Arbitrary amount of facets applied in parallel,

• Easy boolean query formulation by hiding the fact that it is an actual boolean
query,

• Narrowing down and widening result sets by adding or removing simply one
concept,

• No empty result sets,

• Low resolution because of concept composition,
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• Ability to search according to different characteristics and dimensions,

• Usage of value taxonomies,

• Simple way of maintaining and extending the classification.

2.3 Formal Concept Analysis

Formal Concept Analysis (FCA) is a data analysis method from applied mathematics.
It derives groups of similar items and put those groups, called formal concepts, into
an order relation. FCA is conducted on a formal context that divides into formal
objects and formal attributes, whereby attributes are assigned to objects. Bascically
a formal concept is defined by a set of objects sharing the same subset of attributes.
Attributes, objects and the assigned relation together form a formal context. Figure
2.9b presents an example context by means of an attribute matrix. The rows of the
matrix represent formal objects, while the columns correspond to formal attributes.
A cross in the matrix assigns a formal attribute to a formal object.

The order relation between the concepts is assymetric, transitiv and reflexive. It is
called a sub-concept relation and creates a concept lattice. The lattice in Figure 2.9
represents all formal concepts and sub-concept-relations within the example context.
It is read from top to bottom whereby the most top concept is called supremum,
universal concept or top concept and the lowest on is called infimum, contradictory
concept or bottom concept. The sub-concept relation between two concepts is
always directed, so that the upper concepts are super concepts of lower ones.

The lattice uses a particular labeling strategy. Formal attributes are written in italic
letters and are placed above the concepts. Objects are placed below. Due to the
transitivity of the order relation, every object and attribute is just labeled once. the
corresponding concepts are called attribute concepts and object concepts.

An attribute is valid in all child concepts of the attribute concepts, while an object
is contained in every parent concept of the object concept. For example, Figure
2.9b shows that Cola is nonAlcoholic, caffeinic and sparkling. Also, every
object that is hot, is nonAlcoholic. Hot drinks can be caffeinic, but are never
sparkling.

Besides data mining and visual analyitics, FCA is used for knowledge representation
in artificial intelligence, database and ontology engineering, class hierarchy design,
software design (cf. [Stumme et al., 2002]) and linguistics.

The next section introduces a formalization and definition of terms, relationships and
notions for FCA. They are mostly taken from GANTER AND WILLE 1999 to whom
is also referred for proofs as well. The notion of sets and variables is taken from
the same book. After that, a section on reading and advantages of concept lattices
follows.
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(a) Attribute Matrix (b) Concept Lattice

Figure 2.9: Two representations of a the same formal context on drinks. The attribute matrix
is more an internal representation but can be used for visualization as well.

2.3.1 Mathematical Foundations

A formal contextK := (G,M, I) consists of two sets G of objects andM of attributes
and an incidence relation I4. gIm for g ∈ G and m ∈ M means that "the object g
has the attribute m".

For a set of objects A ⊆ G and a set of attributes B ⊆ M one defines

A
′
: = {m ∈ M | gIm for all g ∈ A}

B
′
: = {g ∈ G | gIm for all m ∈ B}

(2.1)

A formal concept of the context (G,M, I) is a pair (A,B) with A ⊆ G, B ⊆ M and
A
′
= B and B

′
= A. It follows that (A,B) = (A

′′
, A

′
) = (B

′
, B

′′
). A is called the

extent and B the intent of the concept (A,B). The relation between A
′
and A

′′
or

B
′
and B

′′
is called Galois Connection.

If (A0, B0) and (A1, B1) are two concepts of a formal context, (A1, B1) is called sub-
concept of (A0, B0), if A1 ⊇ A0 and B1 ⊆ B0. Equaly (A0, B0) is called superconcept
of (A1, B1) and one writes (A1, B1) ≤ (A0, B0). The operator ≤ is called hierarchical
order (or simply order) of the concepts. The set of all concepts of (G,M, I) ordered
in this way is denoted by B(G,M, I) and is called the concept lattice of the context.

An important metric is given by the confidence-function conf (B1, B2). The confi-
dence of an attribute set B1 in reference to another one B2 indicates how many
objects from the extent of B1 are within the extent of B2. It follows that for
B1 ⊂ B2 ⇒ conf (B2, B1) = 1 which can be used to state that a concept im-
plies all of its upper neighbors. Obviously the confidence function is not symmetric
which means that for (B′1, B1) > (B

′
2, B2)⇒ 0 < conf ((B′1, B1), (B

′
2, B2) < 1. The

value 0 is not possible because this would deny a child concept relationship and the

4G and M origin from German "Gegenstände" for objects and "Merkmale" for attributes

16



2.3 Formal Concept Analysis

value 1 means that B′1 = B
′
2 which is equivalent to B1 = B2.

The following relations exist between intents and extents within the formal context.
For A,A1, A2 ⊆ G and B,B1, B2 ⊆ M:

1)A1 ⊆ A2 ⇒ A
′

2 ⊆ A
′

1 4)B1 ⊆ B2 ⇒ B
′

2 ⊆ B
′

1

2)A ⊆ A′′ 5)B ⊆ B′′

3)A
′
= A

′′′
6)B

′
= B

′′′

7)A ⊆ B′ ⇔ B ⊆ A′ ⇔ A× B ⊆ I

(2.2)

These equations are essential for building a concept lattice and understand its mean-
ing. The next section explains the construction of concept lattices in detail

2.3.2 Formalization of Concept Lattices

A concept lattice represents the order relation among all formal concepts of a formal
context. From (2.2) the following two equations can be stated.

(⋃
j∈J

Aj

)′
=
⋂
j∈J

A
′

j(⋃
j∈J

Bj

)′
=
⋂
j∈J

B
′

j

(2.3)

These equations say that the intersection of all intents of object sub sets are the same
as the intent of the union object set. Thus, by adding an object to a set of objects,
it follows from 1) in (2.2) that the intent is narrowed. The same holds for extents,
as shown in the second formula. By adding an attribute to a sub set of attributes, it
follows from 4) that the extent contains fewer the same objects. Adding attributes to
sub sets of attributes is the idea behind a concept lattice. Starting with the universal
concept, concept for concept is created by all possible sub sets of attributes and
their extents.

It leads to a lattice where the distribution of objects is supremum-dense and the
distribution of attributes is infimum-dense. Supremum-dense means that all objects
are part of the universal concept and are successively "removed" from the lattice
while creating new concepts. This removing is the consequence of equation (2.2)
4). On the other side, an infimum-dense distribution of formal attributes means
that the intents grow while approximating the infimum concept. This results from
equation (2.2) 1).

Infimum and supremum play a special role in such a lattice. The Basic Theorem on
Concept Lattices defines a complete concept lattice B(G,M, I) as a lattice in which
infimum and supremum are given by5:

5Taken from [Ganter and Wille, 1999, p.20]
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∧
t∈T

(At , Bt) =

(⋂
t∈T

At ,

(⋃
t∈T

B

)′′)
∨
t∈T

(At , Bt) =

((⋃
t∈T

At

)′′
,
⋂
t∈T

B

) (2.4)

The infimum of a concept lattice is the formal concept the objects of which are the
intersection of all extents in B, that are objects that occur in every formal concept.
The intent of the infimum are attributes that all these objects have in common.
As indicated in the formula, the intent of the infimum is the intent the extent of
the union of all concept intents. That is are all attributes that all objects have in
common that have at least one attribute assigned. The infimum in Figure 2.9b is
empty which means that formal objects exist which satisfiy all attributes.

The supremum of a concept lattice is defined by all attributes that are assigned to all
objects in the formal context. Equation (2.4) shows that the intent of the supremum
equals the union of all intents. The supremum in the lattice in Figure 2.9b has an
empty intent, which indicates that no attribute is assigned to all objects.

In respect to at least two concepts one defines the join as the lowest upper concept
of the two concept and the meet as the greatest lower bound. The join of the
concepts labeled hot and caffeinic is the concept labeled with alcoholic. The
meet of the two concepts is the infimum.

The amount of objects satisfying a set B ⊆ G is called support. The value of the
support-function supp(B) lies between 0 and 1 and is maximal if all objects of the
formal context satisfy all attributes within B. It ca hence be used to describe the
amount of all objects within a concept (A,B)6. It follows B1 ⊆ B2 ⇒ supp(B2) ≥
supp(B1).

Another important metric is given by the confidence-function conf (B1, B2). The
confidence of an attribute set B1 in reference to another one B2 indicates how many
objects from the extend of B1 are within the extend of B2. It follows that for
B1 ⊂ B2 ⇒ conf (B2, B1) = 1 which can be used to state that a concept implies
all its upper neighbors. Obviously the confidence function is not symmetric which
means that for (B′1, B1) > (B

′
2, B2)⇒ 0 < conf ((B′1, B1), (B

′
2, B2) < 1. The value

0 does not occur because it would deny a child concept relationship and the value 1
means that B′1 = B

′
2 which is equivalent to B1 = B2.

2.3.3 Reading Concept Lattices

Reading a concept lattice reveals much information about the formal context. The
following list presents an overview of the information that can be obtained.

Sub-concept relationships The extent of a concept is the intersection of the extents
6Equally one can say "cardinality of the concept’s extend", but it seems better to have a proper
name for that.
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of all parent concepts. Also the extent of a concept is the union of the extents of all
its sub concepts. By this, one can consider the sub concept relation as set operations
on the extents. Similarly the intent of a concept is union of all the intents of its
super concepts (cf. equations (2.2) 1) and 4) ).

Term taxonomy A concept lattice is a class hierarchy with multiple inheritance.
Concepts on the top have a greater extent. Thus, the attributes of their intents
are more general since they describe more objects. Attributes in the intent of lower
concepts describe specific groups of objects. This leads to the conclusion that lower
attributes are a specialization of higher ones, or sub classes. The lattice in Figure
2.9b says that caffeinic drinks are a sub class of non alcoholic drinks.

This example shows, that such a term hierarchy need to not reflect actual semantics
as they are known from real world. The hierarchy is only valid for the formal con-
text. Section 3 describes CREDO, a browser that makes explicit use of such a term
hierarchy to enable browsing in large document sets.

Attribute implications. Attributes on the lower part of the lattice occur only with
those above them. In mathematical terms this is equal to an implication. The
lattice makes it possible to see which attributes formally imply which others. In
the example in Figure 2.9b, the attribute made from grain implies alcoholic and
sparkling (made from grain⇒ alcoholic∧sparkling). Again, this implication
holds only for this particular example and to draw general conclusions, the formal
context must have more objects. Finding implications among attributes is called
Attribute Exploration (cf. [Ganter and Wille, 1999]).

Supremum and Infimum Attributes of the supremum are universally applied to all
objects. Objects not part of the extent of the supremum have no attributes assigned.
Objects in the infimum concept are objects having all attributes applied and their
intent shows all attributes applied at all.

2.3.4 Problems with Concept Lattices

Concept lattices have two major drawbacks in terms of usability, support for novice
users and the size of the formal context.

Concept lattices are generally unknown to most users without a background in FCA
or mathematics. To address this problem, an evaluation of the readability of concept
lattice was conducted in EKLUND ET AL. 2004 . It revealed that, although lattices
are not very intuitive, users where able to understand and work with concept lattices
after a short learning phase. Major problems the users mentioned were overlapping
of concept labels and that empty concepts (unrealized concepts) where not omitted
from the lattice. Concepts are unrealized if their extent is empty. Nevertheless, the
majority of users stated that they would use and recommend the application if novice
users would be supported more in reading and interacting with lattices.

The paper further gives a summary of visual enhancements for lattice drawing. To-
gether with already implemented functions, feedback from the users is reported. The
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following list summarizes:

• Layered background to emphasize layers within the concept lattice. The level
of a node within the lattice depends on the shortest path to the universal
concept. Emphasizing these level would support the user in orientation.

• Coloring nodes according their level in the term hierarchy. Same as above.

• Icons for concepts. In the test application used by EKLUND ET AL. 2004 different
icons were used to distinguish between concepts with only one attribute and
those whose intent is a combination of attributes. That way the users where
able to distinguish between "explicit" classes of objects and "implicit" ones.

• Emphasize universal and contra-dictionary concept because they are different
from "normal" concepts and mark the top and bottom of the lattice.

• Edge highlighting for guiding the user in terms of which concepts are super and
sub concepts of a currently selected one. Especially when using the reduced
labeling scheme as in Figure 2.9b, this enables the user to see all concepts this
concept is a sub concept of.

Finally, Eklund et al. state that their evaluation was encouraging for considering
concept lattices under the terms of information visualization (cf. [Eklund et al.,
2004, p.64]).

The second major of drawback of concept lattices are formal contexts with many
attributes, because resulting concept lattices can contain many concepts and hence
many relations. Exemplification contexts usually comprise up to ten attributes, which
produces lattices that can be well laid out and remain readable (cf. [Ganter and Wille,
1999]). However, real world contexts can comprise for example 8416 objects and 80
attributes, leading to possibly 280 concepts (cf. [Stumme et al., 2002, p.537]). Such
a concept lattice cannot be represented completely with one single lattice.

To reduce a formal context, several methods can be employed. A first class of
methods is considered by mathematically reducing a context. Iceberg lattices show
only the top concepts of a lattice. A concept is shown if its support is higher than a
certain threshold. The threshold value can be adapted by the user in order to show
more or less of the lattice (cf. [Stumme et al., 2002]). A support of 0% shows the
whole lattice including the contra-dictionary concept.

Another mathematical method are Alpha Gallois Lattices (cf. [Pernelle and Ventos,
2003]). These lattices cluster similar concepts into a semi-concept. The value alpha
indicates the percentage of objects that have to be equal in two concepts in order
to put them together. For example, if more than 95% of all non alcoholic drinks
were actually hot, those two concepts from the context in Figure 2.9b would be
represented by a single concept with the intent {hot, nonAlcoholic}

A second class of methods reduce a context manually. One possibility is to reduce
the number of attributes. Another is to define two subsets of attributes. Following
that, a nested line diagram can be drawn. Such a lattice nests another one into each
concept as shown in Figure 2.10. The major lattice is built upon the first set of
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Figure 2.10: Nested concept lattices in Toscana, built from a context on computers. The
major lattice is created from attributes describing case types and the inner lattices are created
from attributes describing graphic cards.

attributes, while the smaller lattices are created upon the second set of attributes.

A major impact on the readabilty of a concept lattice has the layout algorithm.
Basically there exist two general approaches (cf. [Eklund and Villerd, 2010]). The
first is vector based and the second one is based on common graph layout algorithms.
Vector based algorithms consider each attribute as a vector. A concept is positioned
according to the vectors of its intent.

The main component of a graph based lattice layout is a force-directed algorithm.
First, concepts are positioned according their depth in the lattice. In a second step
attraction and repulsion forces are calculated among all concept relations. Such
force-directed algorithms are based on physical models (cf. [Shepard, ]). The edge
crossing within the resulting lattice is minimized but readability can be affected due
to a very horizontal position of the nodes. Figure 2.11 shows a lattice build with a
force directed layout.

Conceptual Landscapes of Knowledge

Wille proposes the landscape as metaphor for knowledge processing. In terms of this
landscape metaphor he defines several tasks such as exploring, searching, analyzing,
investing, deciding, restructuring and memorizing (cf. [Wille, 1999]). He argues in
favor of a landscape because it is directly related to the described tasks. A landscape
is also traveled and observed from many different perspectives and in different scales.
A landscape can be mapped by emphasizing important aspects and omitting others
(cf. [Wille, 1999, p.345]). This metaphor is considered again in Chapter 6, when
developing Facettice.

21



2 Theoretical Foundations

Figure 2.11: Concept lattice created from a context with 10 attributes and 329 objects, using
a level wise layout approach

2.4 Conclusion

Information retrieval divides into the three levels focalized search, learning and inves-
tigation. Each level comprises several tasks differing in complexity and user involve-
ment. Processes for information retrieval must be defined depending on the level,
tasks and purpose of the user. Visual Data Analysis employs various techniques,
mostly from data mining, in order to analyze data by means of visualization and
interaction.

Faceted navigation has proven useful in many domains for quickly retrieving objects
and browse large databases. The technique and corresponding interfaces are easy to
use because they are intuitive and minimal. However, a major drawback is that the
user sees only a part of the data base at once and browsing hints are mostly limited
to indication of the amount of remaining objects behind the next facet value. By
browsing the data base he may reveal relations between facet values, but in a very
implicit way.

Concept Lattices are a powerful tool to observe relations between classes of objects
and attributes themselves. Due to their hierarchical assembly, concept lattices serve
well for an differentiates view on the data. A major drawback of concept lattice
representations is the size of formal contexts. Existing solutions comprise nested
line diagrams, decomposition and context reduction by restricting the considered at-
tributes.

In the context of holistic information retrieval it raises the question of the potential
of a combination of the strengths of faceted navigation and concept lattices. Using
faceted navigation as navigation principle and concept lattices for visualizing the for-
mal context. The result would be characterized by possibly covering and integrating
all three levels of information retrieval. Faceted browsing can be used for focalized
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search and concept lattices can provide direct visualization of the search context.
Furthermore, data analysis can be conducted with the lattices in order reveal rela-
tionships. The results of such an analysis can be used for quickly retrieving objects
and explore the data base.

One can differentiate between information structure and navigation structure. In-
formation structure defines the structure of the data, that is data type, values and
relations, while the navigation structure defines the ways a user can take through this
information structure (cf. [Hearst, 2009, p.76] from [Morville and Rosenfeld, 2006]
and [Newman and Landay, 2000]).

The landscape metaphor used by Wille to describe Conceptual Knowledge Retrieval
is also worth a closer investigation.

This chapter implicitly stated some similarities and differences of faceted navigation
and FCA. However, in order to investigate the potential of an integration, a more
detailed comparison of faceted navigation and concept lattices must be done. The
next chapter presents faceted browsers for faceted navigation and tools for browsing
formal contexts or visualize lattices, or both. This aims to give an overview of trends,
integration potential and the degree to which an integration of faceted navigation
and concept lattices has already been attempted. The projects and their employed
techniques serve as a sensible addition for a comparison of both technologies done
in Chapter 4.
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The last chapter already mentioned major characteristics of faceted browser inter-
faces such as facet and value lists, breadcrumbs and presentation of the search
results (cf. Section 2.2.4). Techniques to support a search and exploration process
are breadcrumbs, colored facets and query preview in form of small numbers associ-
ated with the facet values. Section 3.1 presents some more advanced interfaces and
techniques for faceted search.

For Formal Concept analysis, many tools can be found (cf. [pri, ]). Nevertheless,
most of them are concerned with algorithms and infrastructure for FCA, rather than
lattice representation, information visualization or interaction. Section 3.2 classi-
fies FCA tools into (a) software tools focusing on algorithms, (b) browsers using
FCA for object retrieval and (c) visualizers that are about a visual and interactive
representation of concept lattices.

Section 3.3 presents approaches that combine faceted navigation and concept lat-
tices. The conclusion in Section 3.4 summarizes trends and techniques for faceted
browsers and FCA tools.

3.1 Faceted Browsers

The faceted browsers presented in this section are analyzed in terms of facet presen-
tation, result presentation and breadcrumb visualization. A fourth criteria is query
preview, because it is a pragmatic way of supporting the user in browsing and nav-
igating. Although query preview techniques should give a hint of the next results,
it does not need to anticipate the complete state of the system, including adapted
facet values and search results.

An example that partially anticipates the new system state is RelationBrowser [Zhang
and Marchionini, 2005]. Besides simple value lists for facet presentation, it uses bar
charts to show result proportions for each value. Figure 3.1 shows three facets and
their values listed below. White bars indicate the total amount of objects associated
with the value, while the blue bars represent the proportion of objects in the current
result set. The numbers in blue correspond to the length of the blue bar. When
the user hovers a facet value, all blue bars are adjusted as if the facet value would
have been already selected. This method allows quick and advanced query preview
without changing to much on the interface.

Search Results are presented as simple textual entries within a list, not shown in the
screenshot. A major drawback of the current Relation Browser Interface is that only
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Figure 3.1: Interface of the RelationBrowser++ which uses bars associated with every facet
value to indicate the number of objects remaining under the terms.

Figure 3.2: Screenshot from three Elastic Lists, each representing a facet. Facet values are
represented as rectangles differing in height and brightness to depict the number of objects
remaining under each facet value.

three facets can be viewed simultaneously.

Elastic Lists are similar to RelationBrowser and are integrated in a greater browsing
and analysis application called Content Landscape [Stefaner and Müller, 2007, Ste-
faner, 2008]. Similar to RelationBrowser, Elastic Lists use size for query preview.
Three elastic Lists are shown in Figure 3.3, each representing a facet and correspond-
ing facet values. Facet values are represented by a rectangle differing in height and
brightness. The height indicates the amount of associated items within the current
result set, comparable to the blue bars in RelationBrowser. The brightness represents
the proportion of these items to all items in the data base associated with this facet
value. In addition to the list presentation for facets without value hierarchy, a nested
view is presented if the facet contains a value hierarchy. Breadcrumbs are indicated
by attributes whose rectangle is green.

If a value was selected, other lists and values are adapted immediately to the new
result set. The example shows the selected value peace and the adapted values.

RelationBrowser and Elastic List, both indicate information about the amount of
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Figure 3.3: Different facet presentationd with VisGets; time line and bar chart, map and tag
cloud.

objects within the current result set and their proportion to all objects. Proportions
are in both cases calculated for each facet value independently. A mapping from these
numbers and proportions of objects to graphical variables provides better possibilities
in choosing the next navigation step.

Facets in Visgets are considered as diagrams depending on the semantics of facets
[Dörk et al., 2008]. There is a time line combined with a bar chart for temporal facets,
a map for geographical facets and a tag cloud for arbitrary ones. To support query
preview, facet values differ in size according their global distribution and brightness
to indicate their distribution within the current result set. Results in VisGets are
presented as a list.

Those diagrams provide a more holistic perception of facets, because they express
the general character, such as spatial, temporal or categorical. The diagrams indi-
cate contextual information about the distribution and trends of values, enabling a
rudimentary analysis of the data set. Because this analysis is made in a temporal or
spatial context, it differs from mapping numbers and proportions to just bar charts
or size.

In terms of a deeper analysis of the data set, ResultMap uses a tree map for repre-
senting the distribution and correlation of facet values [Clarkson and Foley, 2008].
Figure 3.4 shows an integration of this technique integrated in the Flamenco faceted
browser [fla, ]. Facet presentation, result presentation and breadcrumbs are managed
by Flamenco.

A ResultMap combines two facets. Facet values of the first facet are mapped to
rectangles of a certain size, corresponding to the amount of items associated with
this facet value. The values of the second facet are also rectangles, but within each
rectangle of the first facet. The second values are distinguished by colors as seen in
Figure 3.4, while the first facet uses text for distinguishing their values. Hierarchical
values can be represented by different levels of the tree map as seen in the example
of Europe.

The advantage of the tree map for visualizing proportions and absolute values is
that it best uses the screen real estate. In contrast to bar charts and geographical
maps, which include a lot of white space, tree maps are compact. Another facet
browser that uses a tree map is FacetMap [Smith et al., 2006]. It presents facets
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Figure 3.4: ResultMaps as integrated in the Flamenco Browser. The rectangles of the tree
map correspond to the amount of objects labeled with each country while color is used to
show proportion and distribution of a second facet prize.

as rectangles of a tree map, which are adapted in size each time the user changes
constrains a facet.

VisGets and ResultMap are concerned with enhanced visualizations of facets, values
and the distribution of results. Faceted and visual graph navigation is a method to
directly browse within the results. It uses hierarchical clustering in order to structure
the results and enable further narrowing [Tvaroek et al., 2008]. Clusters are formed
by explicit structures among data such as co-authorship relations in a publication
database. When searching for papers on visualization, clusters are calculated ac-
cording to these internal structures. Clusters are shown as clouds and can be broken
apart to see nested clusters as shown in Figure 3.5. The clouds contain facet values
that occur most within the particular cluster.

The facet browser, Faceted and visual graph navigation is integrated in, consist of
common interface components for facet and result presentation. The technique of
combining simple and intuitive faceted browser interfaces with interactive visualiza-
tions is a promising way of searching, exploring and analyzing complex data.

Faceted browsers such as Elastic Lists, RelationBrowser++ and Result Maps use
information visualization techniques to support the user in finding the right objects
or exploring the data sets. In general, these techniques emphasize (a) the distribution
of objects among the facet values, (b) query preview techniques, (c) presentation of
and navigation within facets and (d) the direct navigation within the result set.
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Figure 3.5: Screenshot of faceted graph navigation showing result clusters and sub clusters.

3.2 Concept Lattice Tools

3.2.1 Software Tools

Toscana is written in Java and provides a standard visualization of concept lattices
[Becker et al., 2002]. It is often integrated into other projects and follows Wille’s
notion of Conceptual Knowledge Landscapes. The left screenshot in Figure 3.6
shows a lattice for computer cases. The large box shows particular computer for
one concept. Of particular interest are nested line diagrams as shown on the right
screenshot in Figure 3.6. They are created from two different facets that can be
selected from the list on the left. In each concept of the first lattice, a second lattice
for the second facet is nested. Basically, this principle can be used ad infinitum. But
is currently limited to two lattices in Toscana, because the tool does not provide an
appropriate interface for zoom.

Other software tools are ConExp [Yevtushenko, 2006] and Galicia [Valtchev et al.,
2003].

3.2.2 Browsers

Browsers based on FCA emphasize navigation though concepts. They provide nav-
igation techniques but do not use concept lattices for representations of formal
contexts. The interface uses different methods for guiding the user in a search and
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(a) Usual lattice (b) Nested line diagram

Figure 3.6: Concept lattices in Toscana

exploration process that are better suited to deal with very large contexts.

This section explicitly distinguishes between the logical concept lattice and their
visual concept lattice representation.

A simple but intuitive method to browse though concepts is presented with CREDO.
It is a web based browser using Formal Concept Analysis (cf. [Carpineto and Romano,
2004]). The user starts by entering keywords to which documents are retrieved from
the internet. Then, a concept lattice is generated based on important terms occurring
within them.

CREDO creates a horizontal tree structure by that a user can navigate through the
lattice. Every path through the tree is a path through the lattice. Figure 3.7a shows
the hierarchy for the initial keyword infovis. It shows that 14 documents labeled with
infovis and toolkit, 6 are also labeled with data. The user can expand the tree
node terms to see which other terms are associated and can furthermore select terms
to filter documents. Terms in a child relationship are combined by an AND operator.
A thesaurus is used for associate synonyms of keywords.

The hierarchy consists of only two levels, making it impossible to combine more than
two terms (in addition to the initial keywords) and explore the full lattice. Since only
100 documents are retrieved, in order to keep calculation time short, by combining
2 terms, the remaining result set is small enough. The hierarchy is comparable
to dynamic taxonomies since it hides terms that do not match in the document
set. It does not, however, show attribute implications. If a document is labeled
visualization it is not automatically labeled toolkit. CREDO does not create a
term hierarchy comparable to a facet value taxonomy.

Another way of browsing a formal context is found is developed in ImageSleuth (cf.
[Ducrou et al., 2006]) and adapted in the Virtual Museum of the Pacific (VMP) [Ek-
lund et al., 2009]. Both projects base on the principle that each concept corresponds
to an AND query of the attributes of its intent. By selecting attributes from a tag
list, the user retrieves images as shown in Figure 3.7. The retrieved objects are the
intent of the current concept. If the user removes or selects additional tags, the re-
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(a) Lattice
navigation in
CREDO

(b) Screenshot from the Virtual Museum of the Pacific an FCA based im-
age browser. The retrieved objects are specified by "wood" and "coconut
fibre" and can be further specialized by the tags below. "Stone" occurred
most within the current result set and hence does not narrow down the set
significantly, if selected.

Figure 3.7

sult set changes to either a parent or a child concept. The user iteratively navigates
from concept to concept. However, the user is not aware of any concept lattice or
FCA mechanisms.

The navigation principle of the VMP enables to explore contexts of arbitrary size.
Besides selecting attributes from a list and further result set refinement, ImageSleuth
and VMP allow query-by-example which is based on the similarity of concepts. The
similarity of concepts is calculated by the similarity of their intents. Since adjacent
concepts within a concept lattice have already the same intent, searching for similar
concepts becomes a matter of traversing the concept lattice. Figure 3.8 shows the
successive traversing of neighbors of the concept S. Concepts labeled by X are direct
neighbors, and concepts labeled by a stroke are neighbors of the neighbors, traversed
in the next step. ImageSleuth allows the user to specify a percentage threshold for
similarity.

Figure 3.8:
Traversing the
concept neighbor-
hood.

Browsing interfaces based on FCA do not differ much from ordinary search or explo-
ration interfaces. The FCA process and its techniques are transparent to the user.
SearchSleuth performs FCA on the results of a web search and creates a formal con-
text from outstanding terms within the documents (cf. [Ducrou and Eklund, 2007]).
Figure 3.9 shows the interface of SearchSleuth. Besides the text fields for typing
keywords, it shows three categories of attributes. The attribute in red are those of
the current intent and the blue ones are attribute that can be added. The attributes
in gray are grouped into sets which are intents of neighbored concepts. Since there
are potentially many neighbored concepts, SearchSleuth changes only one attribute
at once.

Other tools like FooCA use attribute matrices and concept lattice representation for

31



3 Related Work

Figure 3.9: Interface of SearchSleuth showing terms for navigation to parent (red) , child
(blue) or sibling concepts (gray).

showing conceptual relations between documents of a web search [Koester, 2006].
The next section presents tools that use enhanced lattice representations going be-
yond simple line diagrams.

3.2.3 Visualizers

The third group of FCA projects related to this paper are those concerned with
a visualization of concept lattices. Toscana and ConExp also use concept lattice
representations but do not provide further interaction and visualization techniques.
Visualizers focus on the usability of concept lattices and consider them as primary
interface for interacting with a formal context. They often integrate browsing tech-
niques as well.

The first interactive visualizer of concept lattices was Ulysses [Carpineto and Ro-
mano, 1995]. It uses a layer and graph based concept lattice representation in the
context of document retrieval. Figure 3.10 shows the concept lattice after the user
has entered the query term knowledge-based-systems. In this example, this terms
implies two other, shown together in the concept. All formal concepts until the uni-
versal concept are shown. The attribute names are written within the concepts with
a number indicating the amount of objects.

Two techniques are of interest in Ulysses. The first is a fisheye for browsing concepts
as shown in the example. The current concept is drawn in black and is bigger than
others. Direct neighbors are smaller and far distant concepts are shown only by
the the number representing their extent. Concepts that are even farer are omitted
completely but drawn if the user changes the current focus.

The other technique Ulysses uses, is bounding. Bounding means to restrict the
current search space by any direction within the concept lattice. Main directions are
parents, children and sibling concepts.In the example the lattice on the right results
by excluding all other child concepts of of the attribute natural-languages.

Mailsleuth is the first commercial FCA and Concept Lattice tool for average users
[Eklund et al., 2004]. Figure 3.11 shows a concept lattice of the user’s mail folders.
The lattice is integrated directly into a general mail application. Green bars in the
background indicate the levels of the lattice. Upper concepts represent explicit mail
folders and the other ones are derived folders containing mail that from several explicit
ones. Unrealized concepts are potentially possibly but do not contain objects. They
are depicted by smaller nodes. Showing unrealized concepts, however, have shown to
confuse users. Top and bottom concepts are differentiated by triangles to emphasize
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Figure 3.10: Ulysses Interface demonstrating a concept lattice with an fish-eye effect applied
to the black concept. The right lattice is achieved by bounding, that is restricting, the search
space to only parent concepts.

their special character.

A more recent approach to drive lattice visualization towards interaction and usability
is made with ConflexPlore [MIT, ]. It is written in ActionScript using the Flex
framwork1. The core of Conflexplore is an open source framework openFCA deployed
by the same persons [MIT, ]. It implements a basic algorithm for concept calculation
and draws a layered lattice refined with the Spring Graph force directed algorithm
[Shepard, ]. This algorithm can be update the lattice at each time. Thus, the user
can move concepts and the lattice is adapted smoothly, making the representation
more tangible and traceable in terms of changes.

With Conflexplore, the user can define and change own contexts by using an interac-
tive attribute matrix, perform attribute exploration, view a list of attribute implica-
tions and finally navigate through the visual concept lattice. Figure 3.12 shows the
matrix representation and the concept lattice representation. Both screens are inde-
pendently and can not be seen at the same time nor used interactively by brushing
and linking (cf. [inf, ]).

While the matrix representation is only used to edit the formal context, the lattice
representation is used for exploration and navigation. Each concept shows the name
of the attribute and the object, in case there are only one in each case. Otherwise
the amount is shown. In order to deal with large contexts, the user can adjust the
amount of visible neighbor concepts by a range slider. Equal to Ulysses, the visible
concept lattice changes when the user focusses on another concept.

The tools discussed in this section are designed for either a specific domain like
MailSleuth, or are single visualizations like Toscana and Conflexplore. Also those
tools have a major focus on search and exploration.

FolksonomyAnalyzer is a holistic analysis tool for folksonomies (cf. [Yang et al.,
2009]). The tool is created in the context of Conceptual Knowledge Discovery in

1http://www.adobe.com/de/devnet/flex/
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Figure 3.11: Screenshot of MailSleuth showing the concept lattice based on e-mail folders.

(a) Attribute matrix (b) Concenpt lattice

Figure 3.12: Attribute matrix and concept lattice in Conflexplore representing a context of
numbers. The yellow concept in the lattice is the currently selected one and the lilac ones
were previously selected.
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Figure 3.13: The FolksonomyAnalyzer interface with its five views Control View (a), Context
View (b), Concept View (c), Concept Lattice View (d) and the Folksonomy View (e).

Folksonomy (CKDF) which is described as an FCA approach of folksonomy mining
(cf. [Kang et al., 2009]). In folksonomies, users tag resources, which results in
a triadic relation between users, resources and tags. Folksonomies are created in
youTube2, BibSonomy 3, Flickr 4 and delicious5.

Special about CKDF is, that it is concerned with the transformation of the triadic
relationship between user, tag and resource into three dyadic formal contexts about
just two of the components. Having obtained the formal contexts users-tags, users-
resources and tags-resources, a Formal Concept Analysis is conducted on each of
them. The example given by the authors examines user communities within delicious.

The Interface of FolkosonomyAnalyzer consists of five major windows, as shown in
Figure 3.13. The Control View is indicated by (a) and lists all tagging systems the
user has access to. The Folksonomy View is shown as (e) and shows tags, resources
and users belonging together when she selects an instance of these sets. The most
interesting part, the FCA View comprised three windows. The Context View (b),
shows a simple MS Excel-like Attribute Matrix of the context. The Concept List
view and Concept Tree (c) gives an overview of all the existing concepts and finally
the Concept Lattice View (d) showing a Concept Lattice created using ConExp.

The concept lattice shows only one of the three formal contexts. But, concepts are
used as pivot to move to another formal context. By selecting the intent of a concept
a new context is build upon the concept’s extend and the corresponding set of objects
from the third set. By that way the user can travel along interesting concepts and
move between the three contexts user-tags, tags-resources and resources-users.

2http://www.youtube.com/
3http://www.bibsonomy.org/
4http://www.flickr.com/
5http://www.delicious.com
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The overall focus of FolksonomyAnalyzer is to lower the complexity of the three
dimensions of data and the corresponding shift in information and focus. Also it is
an application that combined different views on a data set and links them together
interactively.

3.3 Integration Approaches

Having presented projects and techniques from faceted navigation and FCA applica-
tions, this section presents four projects that use concepts from both, faceted nav-
igation and FCA. The section evaluates the presented approaches under a general
scheme to extract similarities, trends and common techniques. Criteria are structure
of facet values, presentation of facets, application and visualization of lattices, result
representation and how they serve for focalized search, exploratory search and data
analysis. Table 3.1 at the end of this section summarizes the results.

Aduna Autofocus is a faceted browser that uses a visualization similar to concept
lattices in order to present relations between results of a query (cf. [Hearst, 2009,
p.268]). Figure 3.14 shows two types of these Cluster Maps. Results are clustered
according the values of a faceted search. Facet values are written as labels on the
corresponding clusters. Relations between clusters indicate the a certain facet value
defines a certain cluster. In this manner, the visualization equals a concept lattice,
without possessing a universal or contra-dictionary concept. The right cluster map
in Figure 3.14, is an extended version showing the objects within each cluster by
yellow bulbs. In this special example the cluster map is used to visualize groups
and relations in delicious [Klerkx and Duval, 2007]. In the right example, colors are
used to distinguish values and simplify the reading. The example shows intersections
of mostly two values and one intersection of three values, while presenting five at-
tributes. Figure 3.14 gives a hint of the problems with the visualization when dealing
with many values and interactions.

Values are selected from a facet lists not shown in Figure 3.14. Values are flat instead
of ordered into a taxonomy.

FaIR is a system, that scales very well in terms of many facts and large value tax-
onomies [Priss, 2000a]. In FaIR, concept lattices are used to formalize a facet value
hierarchy. Figure 3.15 shows such taxonomy represented by a directed acyclic graph
(DAG). It shows the facet value taxonomy of a facet on book contents. The hier-
archy is defined as a thesaurus, that is according to the semantics of the terms. It
does not represent the actual shape of the data. Objects can be classified under one
concept per facet only.

FaIR creates one such graph for each facet and the user can pose queries to the
system by selecting concepts from the taxonomy, objects retrieved according to two
query types: exclusive and inclusive. Exclusive means that only those objects are
retrieved that satisfy only this term , while inclusive retrieves all objects that satisfy
at least the search query. Figure 3.15 shows two queries whereby the exclusive query
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(a) Aduna Autofocus (b) Cluster Maps

Figure 3.14: Screenshot from Aduna AutoFocus.The right is a screenshot from an application
using cluster maps to visualize tag and user relations in Delicious. The current example shows
two users lisamac in green and jgaber in red. The other colored octopuses belong to tags,
even if not apparent. The blue and yellow balls represent bookmarks collected by users or
assigned with tags.

result is shown by a dotted line and the inclusive one by normal lines.

Two tools, D-Sift [Ducrou et al., 2005] and SurfSleuth [Ducrou and Eklund, 2005],
use one single concept lattice to support search and exploration in faceted data.
Both are equal in integration degree, visualization and navigation but differ in the
structure of the data used. While D-SIFT works with arbitrary facets and value
taxonomies, SearchSleuth works with only two facets with eight flat values.

Figure 3.16 shows a screenshot from D-SIFT used with data about mobile phones.
The authors do not refer to facets explicitly but group formal attributes of same
characteristic. If attributes are numerical, such as price, a scaled context is used to
divide the attribute into equal intervals. Thus, attribute groups correspond to facets
and attribute values are facet values.

D-SIFT allows to build boolean AND and OR queries. To add values that are manda-
tory for all retrieved objects the are added to the zoom set. These attributes are
combined by an AND operator. Attributes that are not mandatory are put into filter
set and are combined by the OR operator.

The lattice contains only objects that apply to all values from the filter. The universal
concept shows the number of objects that do not apply on any of the filter values,
while the bottom concept contains the objects that satisfy all attributes from the
filter set. The contra-dictionary concept in the example is empty. The remaining
concepts are tradeoffs between the values in the filter.

The user can add and remove values to zoom and filter as well as between them. By
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Figure 3.15: Two queries to facet taxonomies in FaIR and their result representation. Black
lines designate results of an inclusive query and dotted lines comprise results of an exclusive
line.

moving a value from filter to zoom, the lattice gets smaller, since all concepts are
omitted where the particular value is not in the intent. Vice versa, the lattice gets
larger.

D-SIFT uses faceted data but creates advanced queries than normal faceted navi-
gation. The lattice visualizes the results and alternatives within the results.

3.4 Conclusion

This chapter gave a brief overview of techniques used in faceted browsing for guiding
and supporting the user, presented software, browsers and visualizations for formal
contexts. Finally projects that can be seen as an integration were described. Ad-
vanced techniques for faceted browsing are visualization of query preview, alternative
presentation of facets by means of diagrams and maps and direct navigation within
clusters of results. All those techniques extend common faceted search to wards ex-
ploration and data analysis. Nevertheless, appropriate data visualization techniques
are not integrated in those faceted browsers.

FCA bases browsers use common navigation techniques such as tree structures or
tag lists. Visualizers employ fisheye, bounding and zoom to keep concept lattices
small well arranged. Highlighting of lines shows the origin of a certain concept as
well as its children.

Table 3.1 shows a summary comparison of the Cluster Maps, FaIR and D-SIFT. It
shows how much of an integration has been done, also non of the tools are developed
with that intention. Value taxonomies are managed by FaIR and D-SIFT. Boolean
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3.4 Conclusion

Figure 3.16: Screenshot of D-SIFT showing facets and attrubutes on the top and the concept
lattice representation in the center. The lattice shows the formal context defined by selected
attributes.
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3 Related Work

Aduna/ClusterMaps FaIR D-SIFT

Data Structure Flat values Value taxonomies Value taxonomies6

Facet presenta-
tion

Text list One DAG for each
facet

Text list

Concept Lattice

Formal context Lattice like structure One DAG for each
facet

One lattice

Visualization Colored values, con-
cepts differ in size ac-
cording extent, rela-
tions are “tentacles”
indicating direction

DAG, no actual lat-
tice, no bottom con-
cept.

Concepts are colored
according lattice level

Navigation Hover item sets to
highlight related ones

Select concepts for
specifying query

Pan&Zoom, Hover
concepts

Result Represen-
tation

Text list (FaIR has never been
implemented)

Labeled concepts

Query AND, OR AND, OR AND, OR

Tasks

Focalized Search X X XX

Exploratory
Search

X XX

Data Analysis X

Explicit integra-
tion

no yes no

Table 3.1: Summary on integration approaches for faceted navigation and concept lattices.

queries are supported by the AND and OR operator, allowing to visualize mandatory
and additional facet values. Concept lattices are used for displaying those values and
allow the user to find tradeoffs between criteria while searching for certain items.
However, Cluster Maps do not scale well in terms of many facet values and FaIR
does not adapt to implicit structures in data, because the taxonomy is predefined.
Both facts lower the limit the possibility of a wider exploration of the data base.
D-SIFT is the only tool that makes exploration usable by its filter and zoom policy.
A wider data analysis, however, is limited by missing visualization techniques.

Except from FaIR, which shows the value taxonomy by a graph, facets and values
are still periphery to lattices and remain simple text entries and lists.

The next chapter investigates faceted navigation and FCA in detail in order to define
potential integration points. The chapter revives examples and techniques explained
here.
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4 Comparing Faceted Navigation
and Formal Concept Analysis

Last chapter showed that approaches were made by faceted browsers to support
search and exploration visually. On the contrary, concept lattice representations
are applied to other domains than mathematics and used for knowledge retrieval.
Integration approaches of faceted navigation and FCA exist, but are not widely used.
The last two chapters also mentioned some similarities between faceted browsing
and FCA, especially in terms of data structure, querying and object retrieval. This
chapter presents a comparison of faceted navigation and FCA in order to point out
further similarities and possibilities for an integration.

The main link between faceted navigation and FCA is that both techniques deal with
sets of similar items and that their data structure is basically the same. Carpineto
states that "each class of the lattice is seen as a query (i.e., the intent) with its
associated set of documents (i.e., the extent)"1. This is true for all conjunctive
queries. Nevertheless, he does not refer to further query techniques such as OR and
NOT queries or data structures related to such a query like attribute hierarchies or
conceptual graphs.

Despite of many similarities, there is only one comprehensive discussion in literature
that opposes faceted navigation and FCA directly (cf. [Sacco and Tzitzikas, 2009,
p.59ff]). In their conclusion, the authors mention that in practice, lattices become
to big to be useful, whereby Dynamic Taxonomies are used to prune unimportant
parts of the concepts and make the search space feasible.

They hold two views. First, they argue in favor of an application of extensions. Vari-
ous extensions on FCA and faceted search do already exist and have to be compared
in terms of a possible combination. It is assumed that extensions from one could
already be adapted by the other.

Their second argment is a possible functional combination whereby faceted browsing
is used as the front end to the more complex Formal Concept Analysis (cf. [Sacco
and Tzitzikas, 2009, p.64ff]).

To approach this thesis of similarity and extension, it is made a more detailed inves-
tigation on Faceted Search and FCA. Since this work is primary concerned with a
visual and interactive integration, a major focus is on the character of the interface
in both technologies.

Because the terminology is different in both domains but same or similar ideas are

1 [Carpineto and Romano, 1995, p. 94]
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4 Comparing Faceted Navigation and Formal Concept Analysis

described, Table 4.1 refers to the different terms. It builds on the comparison in
SACCO 2009a, page 61 and is used as a general reference throughout this thessis.

Faceted Search Formal Concept Analysis

Object = Formal Object

Concept/Facet Value = Formal Attribute

Focus = Formal Concept

Result Set = Concept Extent

AND-Query = Concept Intent

Facet = Many-valued Attribute

Classification = Formal Context

Value Taxonomy = Scale Context

Table 4.1: Different Terminology in Formal Concept Analysis and Faceted Search

Objects are the same entities in faceted navigation and FCA, so are facet values and
formal attributes. In faceted navigation the notion concept is used to describe a
single value of the facet and can be assigned to objects. By doing so, the object is
explicitly labeled as instance of this concept. A formal concept in FCA is character-
ized by the Galois Connection between intent and extent. Thus, a formal concept
has its equivalent in the current focus of a faceted search. If the values from the
query are combined by the AND operator, the query can be seen as intent and defines
a formal concept. The extent of this concept is the results set. A facet corresponds
to a many-valued attribute in FCA and a value taxonomy is the Contextual Scale of
the many-valued attribute.

The comparison in this chapter starts with a brief overview of the main scopes of
faceted navigation and FCA and is followed by an overview over data structures,
computation of result sets and concepts as well as navigation methods. The final
discussion in this chapter is about posing queries as well as the proposition of a
interface design pattern collection for faceted navigation and FCA. The collection
gives an overview over the applied techniques and is some patterns are reused later
in Facettice.

This section concludes with a description of an integration potential and outlines
major integration points that are approached in Facettice.

4.1 Information Retrieval Activities

Faceted Browsing is used for quick object retrieval, FCA is a mathematic analysis
technique for knowledge retrieval. They origin from different fields and FCA is used
as a data mining technique, working with data about data. Faceted navigation
aims at proving a useful and simple interface to the actual data. In terms of the
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4.2 Data Structure

information retrieval process, faceted navigation covers focalized search and lookup
activities as well as some tasks from an exploratory search (cf. Section 2.1.1). FCA
is used to perform more complex retrieval tasks to investigate and analyze the data
set. While faceted navigation can be performed without prior knowledge, FCA and
reading concept lattices needs some training.

4.2 Data Structure

4.2.1 Taxonomies and Conceptual Scales

Both technologies share the same basic data structure consisting of objects described
according to a defined terminology. A faceted classification usually consists of facets
grouping facet values. Facet values can be arranged into an explicit value taxonomy.
A value taxonomy usually is build upon a is-a or is-part of relation. If an object
is classified under a concept, it is also classified under all its parent concept.

A concept lattice contains two implicit hierarchies, an attribute hierarchy among at-
tributes and a hierarchy of concepts. The attribute hierarchy can be used directly as
taxonomy or being compared to an explicit taxonomy in order to discover inconsis-
tencies. The attribute taxonomy is called an extensional classification because it is
exploits structures within the actual data to create a data model. This approach can
be described as bottom-up in comparison to the top-down approach of the inten-
tional classification in faceted data. In a faceted classification, the model is created
prior to the classification of objects. Thus, FCA can be used to create a preliminary
classification which can be taken and modified as intentional taxonomy for classifying
further objects.

Although the hierarchy of concepts is actually the same as the attribute hierarchy, its
semantics are different. The concept hierarchy is a hierarchy of anonymous clusters,
rather than of designated classes, as it is the case in an attribute hierarchy. Also,
the distribution of objects within a concept lattice is supremum dense which means
that upper concepts represents large groups of items and lower concepts are detailed
classification. By observing the concept hierarchy one can describe the behavior of
objects, not classes. For example, an objects is part of two major concepts, one with
the intent a and the other with the intent b. The essence of this example is not
that there is a small correlation between a and b, but that there is an individual that
belongs to both groups.

Besides the implicit hierarchies in concept lattices, FCA allowsmany-valued attributes
(cf. [Ganter and Wille, 1999, p.37ff]). Formal attributes are one-valued if they are
only true or false for objects. Many-valued attributes can be compared to facets
because they contain several values. The formal attribute Colorfor example, can
have the values blue, red and yellow, equally to facets.

Since concepts can only be created from one-valued attributes, many-valued at-
tributes must be transformed. A one-valued attribute is created for every possible
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4 Comparing Faceted Navigation and Formal Concept Analysis

value. This transformation is done by a conceptual scale, which is a formal context
that defines implications among the new one-valued attributes. It can hence define
an intentional hierarchy among those one-valued attributes. For example, the con-
ceptual scale to transform the many-valued attribute Locality can has one-valued
attributes for continents, countries, regions and cities. These one-valued attributes
are considered objects of the conceptual scale as well and the incidence relation in-
dicates whether an attribute implies another. In terms of the locality, certain cities
imply certain regions and so forth. The general formal context contains then only
one-valued attributes an the implications from the conceptual scales are used to
complete the assignation of the newly created one-valued attributes to objects.

4.2.2 Continuous Attribute range

Not only can conceptual scaling be used to model arbitrary facets and value tax-
onomies in FCA, but also to model attributes with a continuous range such as price,
for instance. The formal attribute price is divided into one-valued attributes that
describe a certain range. An object is now assigned a certain range. Due to the
possibility of creating hierarchies with conceptual scales, an object which’s price is
20, is assigned ≥ 10, ≥ 20 as well as ≤ 30 and ≤ 100.

Faceted browsers such as VisGets use range slider to specify a range within a con-
tinuous facet.

4.2.3 Facet Hierarchies

Section 4.2.1 mentioned a value taxonomy for facets. Within a system of many
facets, it is useful to group facets into larger facets. The DelViz Visualization Tax-
onomy, presented in Chapter 5, groups the facets Data Type, Data Structure and
Domain into the super facet Data in order to emphasis a distinguishing from facets
about visualization and interaction.

There is no implication among the facets like in value taxonomies. An object classified
under a value of Domain does not imply that it is also classified for Data Type and
Data Structure.

In FCA, conceptual scales are used for modeling attribute taxonomies but can not
be used to group many-valued-attributes. Facet hierarchies, however, can be used
to reduce and decompose large data sets.

4.3 Computation

The two main problems of large concept lattices are visual clutter and performance
of computation (cf. Section 2.3.4). Concept Lattices need to be calculated before
the user interacts with them. The same happens if the formal context changes.
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4.4 Query Construction

Facated Browsing on the other side calculates the results on-the-fly, it calculates each
result set when the user specifies its query. Lazy computation is a major advantage
of faceted browsing systems and allows them to deal with large data bases. If for
every facet value the corresponding values are stored or cached the time complexity
is O(|G| ∗ |M|) where G are the objects and M are the attributes (cf. [Sacco and
Tzitzikas, 2009, p. 63]).

For calculating concepts for FCA, various algorithms exist. Ganter’s Algorithm is the
first one and has an exponential time complexity O(|G|2 ∗ |M|) [Ganter and Wille,
1999]. A general comparison of computational complexity of algorithms for gener-
ating concept lattices can be found in KUZNETSOV AND OBEDKOV 2002..

A possible tradeoff-between pre calculation and on-the-fly computation are Iceberg
lattices as explained in Section 2.3.4. They compute only the top most concepts of
the lattice according to a threshold of a minimal support. The rest of the lattice can
be computed later. Alpha Galois Lattices are a similar approach, clustering concepts
by similarity [Pernelle and Ventos, 2003]. Concepts are merged if the confidence
between them exceeds α.

4.4 Query Construction

In faceted navigation, every combination of facet values is called a query. Every FCA
concept represents a boolean AND-query. Faceted Browsers also allow queries by the
OR and NOT operator (cf. [Ferré, 2009]) although no common used interface solutions
exist for that purpose. In comparison to concept lattices, the result presentation is
trivial. Priss discusses the idea of calculating formal concepts on the base of OR
and even NOT-operators, but concludes that this approach yields to much concepts
(cf. [Priss, 2000b, p.133]).

This paper rises the question if there is no actual need to calculate concepts based on
an OR or NOT-intent, because common concept lattice already show those objects in
an implicit manner. For example, the objects in the filter of a concept c with intent
m are those objects that correspond to at least one attribute from m. Objects in
the extend of concepts that are not sub concepts of the filter of c are objects that
represent results of a NOT-query in terms of the attributes in m. In that way, a lattice
can be used to visualize at least simple queries.

Following De Morgan’s Laws one can transform every query p ∨ q into ¬(p ∧ q).
Thus, the concepts denoted by p ∨ q are all concepts that are not descendants of
the concept ({pq}′, {pq}).
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4.5 Navigation

Eklund and Villerd state that a user does not interact with the lattice on the whole but
rather navigates from one concept to another, while removing or adding attributes
to the current intent (cf. [Eklund and Villerd, 2010, p.305]). Projects such as The
Virtual Museum of the Pacific, ImageSleuth and CREDO are good examples for that.

The same holds for faceted navigation, where the user narrows the result set by
adding an facet value and enlarges it by removing values. The navigation technique
of faceted navigation is the same as for traversing large lattices. Five navigation
techniques can be described for faceted navigation and are explained and adapted
to navigation within concept lattices in the following (cf. [Stefaner et al., 2009,
p.78ff], [Ferré, 2009]).

Zoom-in

Zoom-in means to restrict the search result set by adding more facet values to the
constraint set, because the user zooms into the data set. The contrary is zoom-out
whereby the user removes certain facet values from the constraint and hence widens
the result set. In a concept lattice a zoom corresponds to a navigation to a sub
concept which works in the same way. In FCA, a zoom operation onto a concept c
means to omit all concepts that are not sub concepts of c . D-SIFT implements this
zoom techniques explicitly.

Shift

A shift is performed by exchanging two facet values. It corresponds to a zoom-
out and zoom-in consecutively. The effect is a "horizontal" move in contrast to a
vertical zoom. In a concept lattice, a user would navigate to a sibling concept via
either a common parent or a common child concept. This principle is implemented
in SearchSleuth (cf. Section 3.2.2). For example, the current query is student and
art history, the user exchanges art history by computer science.

Pivot

A dynamic taxonomy shows only those facet values which are still present in the cur-
rent result set. If a user starts a completely new query based on at least one of those
values, he performs a pivot operation. The new query has no common facet value
with the old one. The attribute the new query bases on is called pivot. In the previ-
ous example the attribute tu-dresden might occur. If the user selects tu-dresden
and deselects student and computer science, tu-dresden has become the picot.

Performing a pivot operation in a concept lattice corresponds to navigate from a
concept c1 to a concept c2 so that the join of c1 and c2 is the universal concept. In
the example, the intersection of the two queries is empty.
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Slice and Dice

Removing the facet value v1 of facet f1 from the current query and adding a value
v2 of a facet f2 results in a slice and dice operation. The example of student and
computer science could be changed to student and dresden. By shifting from
the facet studies to the facet location, the user changes the semantic of this
query, in contrast to the navigation step pivot.

Query-by-Example

A query-by-example is the retrieval of objects that are similar to a given set of objects.
All their facet values together create a new AND-query. By two students, one that
studies art history and the other one computer science, results in the query
is:student AND studies:art history AND studies:computer science. The
new result set might be very small.

In a concept lattice the result concept of an query-by-example is the meet of the
most specific concepts the objects belong to (cf. Section 2.3.2).

The relation between navigating among concepts in a concept lattice and changing
the query in faceted navigation is evident. Each of the presented navigation tech-
niques performed in faceted navigation has its correspondent in a concept lattice
of the same data set. Moreover, faceted navigation is navigating through concept
lattices.

4.6 Interface Design Patterns

Design patterns are a common way to describe standard solutions for problems in a
certain domain. An essential high-level overview to User Interface Design Patterns
was made by TIDWELL 1999 and TIDWELL 2005, but many others exist [Welie,
2010,HCI, 2010,Erikson, 2010,Fincher, 2006,Fincher, 2009].

Patterns for Information Design are a collection within a greater collection of In-
terface Design Patterns [Potsdam]. These InfoViz patterns are divided into the
categories Display Patterns, Behaviour Patterns and Navigation Patterns.

Design patters for faceted navigation are described in SACCO AT AL. 2009 p.86ff and
are subsumed here in short.

• Selection Management describe patterns such as check boxes and range sliders
to select facet values.

• Revealing Hierarchy for giving an overview on facet and value hierarchies. Solu-
tions are simple explorer trees, collapsable facet panels and continuos zooming
(cf. [Dachselt et al., 2008]).

• Facet Management patterns deal with the problem to show all facets on the
screen and distinguish facets by colors for example.
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• An History Navigation pattern are breadcrumbs which allow the user to go
back in history and see her actual focus.

• Patterns for Visualizing Properties are numbers on values Elastic Lists or bar
charts as in RelationBrowser++.

Based on the observations of this chapter, the chapter on related work and especially
Table 3.1, this section creates a taxonomy of concept lattice design patterns (CLDP)
for concept lattice visualizations. It classifies patterns into Perspective Patterns, Vi-
sualization Patterns and Navigation Patterns. Since there is no comparable collection
of CLDPs, this taxonomy presents a first approach. Each pattern comprises a name,
a problem description a solution and references to related patterns.

The pattern collection serves as an analytical method to classify and compare CLDPs
as well as to give the opportunity to identify extension points. A second purpose is
to provide independent and purposeful building blocks for further visualizations and
tools.

4.6.1 Perspective Patterns

Mining patterns do not directly belong to the core FCA functions but apply algorithms
to re-arrange or reduce a concept lattice.

Iceberg Lattice

Problem: Large Context
Solution: Calculate only concepts c whose support supp(c) is more than s ∈ [0, 1]
Result: Only the top most concepts will be displayed. By decreasing s, more concepts
will be shown. If s = 0, the whole lattice with bottom concept is shown

Alpha Galois Lattice

Problem: Large Context
Solution: Cluster concepts by similarity α ∈ [0, 1]
Result: If α is 0, only one concept is shown, if α becomes larger more concepts are
shown until the complete lattice is shown for α = 1

Attribute hierarchy

Problem: Generality relations between attributes
Solution: Lattice is interpreted as hierarchy among attribute concepts
Result: A directed acyclic graph
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Concept Tree

Problem: Large lattice or no resources for showing lattice but necessity to traverse
lattice in an easy manner
Solution: Create tree with node duplication for lattice starting with top concepts
Result: Navigable tree structure that can be visualized by simple tree lists or tree
maps
Exmaples: CREDO

4.6.2 Visualization Patterns

Visualization Patterns aim in increasing the readability of concept lattices without
changing the structure or data as Filter patters do.

Reduced Labeling

Problem: Concept lattice with many attributes and objects
Solution: Show attribute and object names only at corresponding attribute or object
concepts
Result: Every attribute and every object name appears only once within the lattice
Examples: Toscana, D-SIFT, MailSleuth, SurfSleuth, Ulysses

Nested Line Diagram

Problem: Large context
Solution: Group attributes and create a concept lattice louter for one attribute group.
For each concept in louter create a lattice linner
Result: The big lattice louter shows for every concept a specific lattice linner
Examples: Toscana

Fisheye

Problem: Large concept lattice
Solution: Reduce size of concepts depending on their to the current focus, possibility
of omitting very far concepts
Result: Only the direct neighborhood of the current lattice is visible. If the user
changes its focus, the visible neighborhood
changes as well.
Examples: Ulysses
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Distinguish Top and Bottom Concepts

Problem: Increase usability for users without background in FCA
Solution: Distinguish top and bottom concepts visually from other concepts
Result: Emphasizing top and bottom concept as well as direction of concept lattice.
Examples: MailSleuth

Layering

Problem: Increase usability for users without background in FCA
Solution: Layer background of lattice in order to emphasize direction or chose layered
layout approach
Result: Implicit grouping of concepts of same depth
Examples: MailSleuth, SurfSleuth

Line Highlighting

Problem: Show relevant parent and child concepts
Solution: Highlight all concepts and relations until top and bottom concept
Result: Users see particular attribute hierarchy section of the concept lattice
Examples: ConExp

4.6.3 Navigation Patterns

Navigation patterns aim a navigation within the lattice, starting at a particular con-
cept and defining the way the user can take. Besides the already mentioned patterns
Zoom, Pivot and Shift following are part of this collection.

Concept Neighborhood

Problem: Retrieve similar objects or similar attributes
Solution: Traverse concept neighborhood iteratively.
Result: If lattice is already calculated, this is a fast and solid method to retrieve all
similar items ordered by similarity.
Examples: ImageSleuth

Bounding

Problem: Bound search or navigation space within lattice
Solution: Restrict direction in lattice to only or combinations of parent concepts,
child, concepts, left-sibling and right-sibling.
Examples: Ulysses
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4.7 Integration Aspects

Table 4.2 shows a summary of the comparison of faceted navigation and FCA.

The data structure used for faceted classification and FCA is basically the same. Also
FCA ca handle attribute taxonomies by conceptual scales. A dynamic taxonomy is
represented by the intent of child concepts in a concept lattice.

Facets, a facet hierarchy and value hierarchies could be used to reduce a formal
context, define precise foci, define levels of abstraction and examine facet charac-
teristics.

In terms of a value/attribute taxonomy, a faceted classification is a top-down ap-
proach because the taxonomy is created prior to classification. Besides conceptual
scales, an attribute taxonomy is created after classification of the objects. Thus,
FCA presents a bottom-up approach to taxonomies, based on the actual instantiation
of elements.

An integration in terms of taxonomies helps to reveal inferences among values of the
explicit value taxonomy and improve it.

While faceted navigation computes results for a query set on-the-fly, FCA needs to
calculate all concepts first before they can be accessed by a user. By navigation from
result to result, the user navigates through the concept lattice. Navigation modes in
faceted navigation are easily represented in concept lattices.

One possible integration is the successive construction of the lattice by user naviga-
tion. Instead of creating the whole lattice at once, it is created upon and adapted
to the users search history. A lattice is able to show parts of the data set the user
has already visited, provide alternatives by context neighborhood and visualize precise
navigation paths. The lattice can become the map of the search space, adapted to
the users view.

When the user poses queries with an OR or NOT operator, his navigation paths become
complex. Nevertheless, it must be investigated how a concept lattice can visualize
complex queries.

The interface of faceted browsers and concept lattice application differ most. Each
technology established certain interface design patterns that are widely reused. The
tightest integration made in D-SIFT, uses only the Facet list pattern from faceted
browsers.

A simple combination of interface patterns from faceted navigation and FCA is a
first step. But, the creation of a holistic interface is different.

Faceted navigation hides complexity of data by accessing them by means of the
data model, which are the facets and their values. The trend in faceted browsers is
towards involving information from actual data to create dynamic taxonomies and
query previews. FCA, in contrast, shows complexity and instantiation of data in order
to create a general model an understanding for data.

Not much information visualization techniques have been adapted to concept lattices.
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Property Faceted Search Formal Concept Analysis

Information
Retrieval

Focalized Search , Exploration Data Analysis, Exploration

Known Item Search, Exploratory
Search

Exploratory Data Analysis

Object-Seeking, Knowledge Seek-
ing

Knowledge Seeking, Wisdom-
Seeking

Navigation, Browsing

Data Structure Explicit facet and value taxonomy Explicit conceptual scales

Dynamic Taxonomies Implicit attribute and concept hi-
erarchy

Thesaurus

Computation Lazy computation Pre-calculation

Linear time complexity Exponential time complexity

Query AND, OR, NOT AND, OR, NOT (cf. Section
6.3.3)

Navigation Zoom, Shift, Pivot, Slice and Dice, Query-by-example

Interface Facet list, tree, tree map Bounding

Breadcrumbs Line highlighting

Facet diagrams Attribute Hierarchy

Color coded facets Concept Tree

Query Preview Reduced Labeling

Rank results Nested Line Diagram

Range slider Fish eye

Set based browsing Distinguish top and bottom con-
cept

Layering

Iceberg Lattices, Alpha Galois
Lattics

Table 4.2: Overview of the comparison of faceted navigation and Formal Concept Analysis.
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In order to analyze data, patterns must be described which can be emphasized visually.
Therefore, the next chapter presents a real-world data set. It is accessed by average
users for search and browsing as well as by experts for data analysis. The mentioned
integration points are approached in Chapter 6 and are:

1. Information visualization within concept lattices

2. Query preview

3. Development of an interface component for direct navigation inside concept
lattices

4. History visualization and iterative lattice construction
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5 Application Domain and Task
Analysis

This Section describes and analyzes a data set that serves as a primary reference
for the concept and realization of Facettice. Two associated visualization projects
are presented and usage tasks as well as additional requirements for an interactive
search and analysis tool are presented.

5.1 DelViz Visualization Taxonomy

The DelViz Visualization Taxonomy collects and classifies visualization projects (cf.
[Keck et al., 2010]). The data are bookmarks stored on delicious1 and tagged with
terms from the visualization taxonomy.

5.1.1 Metrics

The metrics in this section are retrieved from the data set stored at Delicious and
varies in its extend from the taxonomy as presentet in Figure 5.1. Nevertheless, it
gives an good overview over the data set.

Figure 5.1 shows the taxonomy consisting of three major facets Data, Visualization
and Interaction. Each of them has three or six sub facets with an average of 4.5
facet values. The taxonomy comprises 63 facet values assigned to 716 bookmarks
with an average tag assignment of 9.9 per bookmark. Because this last number is
quite large, high interferences among the facet values occur. The corresponding lat-
tice contains many concepts and relations. The total amount of assignments from
tags to bookmarks is 7063. In terms of a maximum amount of 45.1082 assignments
this is a rate of 6.35%. Table 5.1 shows an overview of the metrics collected in this
context.

The formal context spanned by these data is according to the facet values, a larger
medium-sized context. Examples in books use 5-10 attributes while real-world con-
texts comprise up to 100. The amount of objects has a minor influence on the size
of the concept lattice, since the amount of possible intents, and hence concepts,
depends on the combination of attributes.

1http://www.delicious.com
263 facet values × 716 bookmarks = 45.108
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Figure 5.1: Taxonomy of the DelViz Visualization Taxonomy.

Metric Value

Total amount of facets 14

Hierarchy Depth of facet hierarchy 2

Hierarchy Depth of value hierarchy 1

Total amount of facet values 63

Average amount of values per facet 4.5

Total amount of posts 716

Total amount of tag assignments 7063

Average tags per post 9.9

Table 5.1: Important data metrics of the context
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5.1 DelViz Visualization Taxonomy

Figure 5.2: The distribution of tags on the bookmarks show a long tail distribution (11.
November 2010).

Another aspect of the data is shown in Figure 5.2 which displays the distribution of
facet values from the DelViz Visualization Taxonomy. The image reveals the long
tail character of the data (cf. [Anderson, 2006]). The most assigned attribute 2d
is used 559 times on 718 objects which is 77%, or a support of 0.77. According to
this long tail character, it is likely to yield a distribution of attribute concepts over
the whole lattice.

5.1.2 Related Work

There are two tools for exploring the visualization taxonomy and to reveal relations
among tags: DelViz (cf. [Keck et al., 2010]) and a multi touch table visualization
for tag networks (cf. [de Almeida Madeira Clemente, 2010]). Both projects show
relations between the taxonomy values based on a similarity measure. The similarity
of two tags is calculated by the number of common objects.

DelViz uses a tree composition for the facet and attribute taxonomy and relation arcs
to relate similar tags, as shown in the left screenshot of Figure 5.3. The similarity is
codified by the lightness of the arcs; the brighter an arc is, the more do these tags co-
occur. When the users selects a tag, arcs to related tags are shown, otherwise they
are hidden. This techniques is used to explore correlation of tags. DelViz also allows
browsing the visualization projects. Projects are retrieved by faceted navigation on
the taxonomy and are shown on a separate interface component providing screenshots
and a detailed description.

The right screenshot in Figure 5.3 shows de Almeida’s circular composition for facet
values and facet membership indicated by colors. A major advantage of the circular
layout of elements is the ability to show relations between all elements in an clear
way and avoid node occlusion (cf. [Gansner and Koren, 2007]). Edge bundling was
applied by de Almeida to reduce visual clutter and better show trends and clusters
within the network (cf. [Holten, 2006]). In addition to that, is is differentiated into
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(a) DelViz (b) Tag network visualization

Figure 5.3: Screenshot from DelViz on the left, showing the related tags by thread arcs. The
right is a screenshot from the tag network visualization by DE ALMEIDA 2010.
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three types of relations indicated by color. Similarity between attributes, is codified
by the lightness of the relation line as well as in the height of bars corresponding to
circle segments.

When a user selects a facet value, an adapted image is shown, equal to a dynamic
taxonomy. The new circle is shown inside the other one. Similar to tree rings,
this technique visualizes history and the user can go back. Also, the proportionality
between tag occurrence in the last and the current focus is indicated.

The representations of both DelViz and de Almeida emphasize an exploration by
focused views one attribute. While DelViz supports browsing and search, de Almeida
allows deeper exploration and analysis.

5.2 Usage Tasks

Discussions on how to generally structure tasks and actions in data analysis and to
divide them into smaller graspable actions have been made in general (cf. [Bertin,
1973], [Shneiderman, 1996], [Amar et al., 2005], [Andrienko and Andrienko, 2006],
[Zhou and Feiner, 1998]).

YI 2007 analyses various Usage and Interaction taxonomies in the field of Information
Visualization. The authors conclude seven own major tasks that are references in
the following.

• Select: mark something as interesting

• Explore: show me something else

• Reconfigure: Show me a different arrangement

• Encode: Show me a different representation

• Abstract: Show me more or less detail

• Filter: Show me something conditionally

• Connect: Show me related items

This Section defines three usage scenarios for the visualization taxonomy which has
also been reported in [de Almeida Madeira Clemente, 2010].

5.2.1 Focalized Search

Visualization projects should be found by characteristics and for different purposes.
Since the objects in the visualization taxonomy are classified under several facets,
they can be used to retrieve the objects. An example would be to find "all interactive
science news visualizations that make usage of the map metaphor".

The basic challenge for an interface is to provide an overview over the facets and let
the user observe the objects in detail. The process of a focalized search has a few
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steps as explained in Section 2.1.2. Information, necessary to solve such tasks and
the resulting conclusions for a visualization are:

1. provide an overview over facets, attributes and their hierarchy so that the user
knows how he can specify his query,

2. present the search results and let user observe them by detail, and

3. support the user in deciding whether the retrieved results are accurate. If not,
enable him to either rewrite his query or retrieve similar objects.

5.2.2 Browsing and Exploration

An example for exploration is to find related projects for a specific visualization
technique or look for ideas for a certain domain (cf. [Keck et al., 2010]).

Since this question cannot be expressed by one single Boolean query, it has to be
subdivided into several. An initial query could ask for the particular visualization
technique. If the size if the result set is to large, the user can chose a further facet
value. He would chose the one that yields the most interesting projects. So, the
user starts browsing and explores the data set by following interesting facet values.

Conclusions for Facettice are:

1. provide an overview of associated terms,

2. suggest what the next query can be about,

3. support query preview so that the user can base her "selecting decision" upon

4. provide a search history that gives the user a picture if his browsing behavior
and enables him to go back to a certain point in time,

5. support query rewriting, which means to change the current query as well as
pose a new one,

6. give a summary of search process that allows the user to decide whether she
has seen every interesting, and

7. attract interest and arouse curiosity.

5.2.3 Data Analysis

The third scenario describes tasks for data analysis. Analysis tasks require explicit
questions which then defines the particular analysis method (cf. Section 2.1.3, [Keim
et al., 2008]).

AMAR ET AL. 2005 define low-level tasks of data analysis such as filter, find extremum,
retrieve value, sort, characterize distribution, find anomalies, cluster, correlate, scan,
set operations. Based on AMAR ET AL. 2005, LEE ET AL. 2006 define graph specific
tasks divided classified into Topology-based, attribute-based, browsing and overview.

Since concept lattices are graphs, these tasks are of particular interest. Topology
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based means to observe the relations among concepts, central concepts, outliers as
well as clusters. Those tasks are close related to overview tasks but the latter implies
an holistic picture of the data and its parts. By attribute tasks the authors refer to
particular values of network nodes defined by the data model. Browsing tasks have
been described in the previous section. Since the described tasks are defined for
networks they are taken as an reference for concept lattices.

Concerning an analysis of the visualization taxonomy, there are four main questions
which are: (1) Detect clusters and outlier concepts by evaluating correlation and
implications among attributes, (2) compare facets by their realization ,(3) test the
completeness of the current taxonomy and (4) observe the influence of arbitrary
values onto a set of objects.

It might be interesting to "estimate the distribution of primary visualization tech-
niques depending on the usage domain". An answer may reveal that there is a
preference for maps among the domains of science and news. Or, that there is
preferred technique for each domain. According to the answer, visualization tech-
niques could be grouped by usage domain, data structure or popularity. In contrast
to exploration and search, the focus of an analysis is less on the objects but on the
attributes.

According the above mentioned four major questions, Facettice needs to

• provide a particular analytical view on each facet,

• analyse facets in parallel,

• analyse facets in combination,

• combine arbitrary facet values, and

• apply information visualization techniques to concept lattices.

In addition to the tasks described in this chapter, an browsing and analysis interface
for the DelViz Visualization Taxonomy needs to fulfill three additional criteria. First,
the visualization must obtain data from the website directly in order to allow changes
on the tags and bookmarks. Second, by the same reason, the application must not
limit the number of objects, facets or tags. The last criterion is that a thumbnail
image and a detailed description of each object must be shown. The latter one is not
a generic solution but Facettice is tested with the DelViz Taxonomy for the present.
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Chapter 4 contrasted faceted navigation and FCA, described similarities and differ-
ences between both and pointed out major integration aspects. The chapter also
defined a collection of interface design patterns for concept lattices which are par-
tially reused in Facettice. Chapter 5 described a multifaceted data set with three
usage scenarios Focalized Search, Exploration and Data Analysis.

The conceptualization in this chapter is divided into four steps. The first examines
important data components and describes their relationships precisely. Therefore, a
model called Ontological Space of Data is defined. The model helps making decisions
for visualizing structured and semi-structured data. It is also used to investigate
further relationships between a faceted classification and concept lattices. In a second
step, the analysis of the Ontological Space of Data leads to the identification of
groups of data items and entails conditions for their visualization. The third step
describes an interface metaphor in order to generate a consistent interface idea for
all components. Based on that, those interface components are related interactively.
The fourth step approaches the integration points defined in Chapter 4.

Facettice is a tool that supports faceted navigation by interactive concept lattices.
It presents two types of concept lattice visualizations based on a faceted classifica-
tion and supports faceted navigation in two different ways. The visualizations are
described in the last two sections of this chapter, and demonstrated in the next
chapter.

Since this chapter describes an integration of faceted navigation and concept lattices,
the terms facet value and (formal) attributes are used as synonyms. Context refers
to the neighborhood of a concept, while formal context means the formal context.

6.1 The Ontological Space of Data

6.1.1 Purposes and Process

The Ontological Space of Data (OSD) has three purposes which are at the same
time considered steps in a process. The model classifies different data components.
Components are semantically different parts of the data such as data data model,
instances, literals and relations among instances. The term ontological refers to the
pretension of describing structures and entities of a reality in order to discuss and
relate them in a new way.

The OSD does not refer to ontologies as data structure in particular, rather it tends
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to describe all types of structured and semi-structured data. Also non-structured
data such as text and language, can be analyzed by the model but the results are
less substantial.

The second purpose of the OSD is to reveal relationships between the data compo-
nents. Those relationships can be explicit and pre-defined like a class hierarchy or
emerge implicitly from the OSD. Explicit relations depend on the particular data set
but implicit are similar in all data sets, as explained later in this section.

After data components and their relationships are defined, views on the data can be
derived for each component, considering its particular character as well as explicit and
implicit relations. A view can be simple lists and tables or more complex visualizations.
According to the relations among the data components, navigation and interaction
techniques between the views can be defined. These techniques serve to tie different
views together, transform one view directly into another, nest views and so forth.
Interaction between views serves for combining different visual representations of
different data components, such as view of the data model and one of the instances.
The selection of views, navigation and interaction techniques depends on the domain
of the data and specific methodological tasks. Components and relations can be
weighted and prioritized.

Not all discovered components and relations need to be directly visualized or shown
in a final interface, but every absence must be justified and done by purpose.

For example, a data set consists of students each having an average grade, a matric-
ulation number and a set of visited courses. Components of these data are students,
names, grades, matriculation numbers and visited courses. Explicit relations are
has-name, has-mark, has-number and visited-course. Implicit relations exist
between the class of all students and the single individual, as well as between the
student and his courses.

A ranking list for a scholarship only considers the mark and the matriculation num-
ber. In addition, only the 10 best students should be displayed. The limitation
to 10 expresses an implicit relationship between the class of all students and the
single individual. An interactive application for stuffs would consider names and vis-
ited courses as secondary and hence hide this information from the interface. This
detailed information can be retrieved later.

The ranking aspect of the students can be visualized by an ordered list, showing grade
and matriculation number. To guarantee anonymity, names must not be shown in
this application. Since the example is far simply and staffs are familiar with the data
set, it is also irrelevant to visualize explicit relations that students have an average
grade and so on. It suffices to label the head of the resulting table.

Classifying and analyzing complex data structures such as faceted classifications and
ontologies (cf. [Gruber, 2009] ) requires a detailed description of the OSD. In the
following the model is developed with respect to faceted data and concept lattices

The OSD is a two dimensional space, spanned by the Dimension of Scale and the
Dimension of Abstraction as illustrated in Figure 6.1. Data components are classified
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Figure 6.1: The Ontological Space of Data spanned by the Dimension of Scale and the
Dimension of Abstraction. In this example, data components from faceted data are classified
according these two dimensions.

according to these dimensions. The components of a faceted classification are facets,
facet values, objects and object descriptions. Explicit relations exist between facets
and values in form of a hierarchy. Usually there are no explicit relations among
objects, as it is the case in instances in ontologies.

6.1.2 Dimension of Scale

Components of a data set can be considered on the whole, from a global point of
view, as well as in detail observing single data entries only. This Dimension of Scale
can be divided into the three segments global, clusters and local. In Figure 6.1 the
Dimension of Scale is represented by the horizontal axis. Segment global refers to
whole data set, clusters refer to groups and the immediate context of a particular
item, and local refers to the description of a single item or literal.

A transition from global to local is seamless by definition and zooming is the common
physical analogy. A transition can also be discrete, for example, when dividing clusters
into sub clusters, or when obtaining additional information to an object.

An adaption of a faceted classification to the Dimension of Scale is easy. Starting a
faceted search, one yields many objects, then they are filtered according the facets
and finally objects can be observed in detail. Most faceted browsers do not show
all details of an object but short summaries. Detailed information about objects
are URLs, names, descriptions and images; literal resources that belong only to the
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particular object.

6.1.3 Dimension of Abstraction

Independently from the Dimension of Scale, every structured or semi-structured data
set divides into model and instances. Facets, facet values and their hierarchy repre-
sents a data model for objects. This model defines an abstract framework by that
instances are described. Usually, the model is designed by hand, while instances can
be retrieved and classified by algorithms.

The Dimension of Abstraction ranges from the abstractmodel, such as classes, facets
and attributes, to the actual instances. The border between model and instances
is fairly strict, in contrast to the seamless transition within the Dimension of Scale.
Each data component does either belong to the model or the instances, although a
classification is not always trivial.

The data model includes all parts of the data set that are descriptive. They are
comparable to columns in a table. Instances correspond to rows in a table. The
table analogy is similar to an attribute matrix in FCA where objects are rows and
attributes are columns.

Ontologies in computer science make an explicit differentiation into model and in-
stances. The model is called TBox and defines the terminological components such
as classes, relations, properties and semantics (cf. [Gruber, 2009] ). An ontology is
populated if there are instances within the assertion box (ABox) that correspond to
the model.

Nevertheless, a strength of the OSD is that it defines a seamless transition between
model and instances, in analogy to the Dimension of Scale. The aspect that closes
the gap between the two poles model and instances is the realization of the model
in the reality.

The realization describes occurrence and shaping of particular parts of the model,
according to a certain reality. It can be compared to entries in a table, or the incidence
relation in a formal context. By defining realization, the Dimension of Abstraction
divides into the segments model, realization and instances. This partitioning creates
a seamless transition, as in the Dimension of Scale, feasible.

With regards to faceted data, the realization is about the extent of facet values as it
is the case in dynamic taxonomies. The issue of a realization can be and is described
in the next section. Figure 6.1 shows the OSD and data components for faceted
data.

The Facet Hierarchy is shown in the upper left corner because it represents a global
view on the data model. Following the Dimension of Scale, facets divide into sub
facets, values and sub values. The instance set in a faceted classification divides into
clusters, object previews and details of an object.

The realization of the data model is described in the next section.
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6.1.4 Realization and Analysis Statements

Realization has been described as relationship between model and instances. For the
local part of the OSD this relationship is described by the assignment of a single
object to the data model, such as classification or specification of numerical and
nominal attributes. For the global part, the sum of these assertions is considered.
The result are analytical observations about the realization of the model within a
certain reality.

The realization segment can be further divided into qualitative analysis and quanti-
tative analysis, whereby the first is located closer to the instances and the latter is
closer to the model (cf. Figure 6.1).

Quantitative Analysis

The upper level, closer to the model describes quantitative information of the model
such as extent of a class, occurence of a certain value or existence of relations. These
observations are called quantitative analysis because the realization of the model is
described by numbers of extents.

In facet navigation, these quantities are shown by the numbers for query preview
within a dynamic taxonomy or by direct visual variables (cf. Section 3). As explained
in Section 4.6, those numbers are a common design pattern in faceted browser
interfaces.

Quantitative analysis helps to reveal a primary picture of the realization of the model
in a particular data set. It is a mono-directional way of analyzing the data set,
because it only considers structure and components of the model, rather than real
world structures.

Qualitative Analysis

Another level of analysis considers implicit interrelations within the data set extending
or altering the data model. In the worst, such an analysis reveals a violation of
structures of the model. A violation occurs if an instance contradicts the semantics
of the model, for example, if an object is classified under facet values that are defined
exclusive. Usually facets are not exclusive or define equal restrictions, except the
classification originates from an ontology [lon, ]. However, if the data model does
not define explicit semantics, a real violation of the data model can often only seen
by humans. In that terms a visualization would show must show those exceptions.

The data model can be altered or changed if new relations or components exist
among the instances. Within a data base about furniture for example, there is a
facet type with the values bed and sofa. A quantitative analysis revels the extent
of both values. But, only a qualitative analysis can reveal that there are many items
that are beds as well as sofas. As a conclusion, an additional facet value bed-sofa
should be added. Changing or narrowing the set of instances changes the information
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Figure 6.2: Model of the Ontological Space of Data with the nine regions.

from a qualitative analysis, because the set of instances is different. In terms of the
furniture example, an analysis yields different results if only living room furnitures are
considered.

Formal Concept Analysis enables such a qualitative analysis. Concepts rely on in-
stances that are already classified by formal attributes. Based on that, FCA builds
a meta-classification in the form of a concept lattice. The concept lattice can be
seen as a particular data model. This schema may differ from the explicit hierarchical
data model in faceted classification. Moreover, it reflects a particular reality. The
application of FCA in ontology class hierarchy design works exactly this way. By
qualitative analysis the user can detects clusters, correlation and implication among
facet values.

6.1.5 Regions of the Ontological Space of Data

The division of the Dimension of Scale into the segments global, cluster and local
and the division of the Dimension of Abstraction into model, realization and instances
yields nine regions within the OSD, as shown in Figure 6.2. A clean border between
the regions can hardly be defined, rather they represents major aspects of the data
set.

The names of the nine regions are combinations of the corresponding segments in the
dimensions whereby the segment of the Dimension of Scale is put first. In addition,
the regions are numbered as indicated in Figure 6.2.

I. Global-Model This region includes data components related to the whole model.
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In particular, that is a representation of the defined structures and relationships al-
lowed by the model, like class hierarchies, class relations or the set of possible facet
values.

II. Cluster-Model Sub sets of the model are considered in the second region. A sub
set is an arbitrary part of the model.

III. Local-Model This region focuses on the observation of a single model component
and its immediate context as well as annotations and descriptions on the component.
In a faceted classification, the facet values are the most specific entities of the model.

IV. Global-Realization A global analysis comprises the whole model and the whole
set of instances. It enables quantitative and qualitative information based on all
instances in respect to the complete data model.

The region creates the complete concept lattice of a formal context. It puts ev-
ery object and every model component in the general relation of a concept lattice.
Implications and correlation emerging from this lattice are true in the whole data set.

V. Cluster-Realization This region probably is the most important and used one.
Analyzing the whole data set at once can be desired to figure out major trends but
requires more resources. In most cases, a particular aspect or subset of instances is
investigated. The region combines analytical aspects applied to a subset of instances,
facets or values

A sub set of instances or model components yields a reduced concept lattice or even
a single formal concept. The lattice shows only a part of the data and hence its im-
plications are only true for a sub set of the data. However, different reduced lattices
can focus on different or even overlapping aspects. They can be compared in parallel
and extended towards more a differentiated sub set of data.

VI. Local-Realization Each model component is related to the instances it describes.
As explained above, this relation has a quantitative representation as the number of
instances is important. On the other hand an instance corresponds to multiple parts
of the model. For instance, the description of a person, according to her affiliation,
residence, age and so forth.

VII. Global-Instances Regarding all instances at once, gives an idea of their extend
and possible points of interest. One can detect clusters, topological structures like
spanning trees or cycles in a network, composite and hierarchy structures, or general
metrics about all instances. However, information involves few knowledge from the
model, if at all.

Regarding a visualization, the focus in on showing the whole data set and relations.
Topological and composite structures as well as metrics help in creating a purposeful
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picture.

VIII. Cluster-Instances Parts of the instances can be structural clusters or arbitrary
subsets. Also a filtering according to the model is possible, which happens in faceted
browsing.

IX. Local-Instances A single instance may have several literal properties like a name
and a URL. They actually correspond to the model since their existence is defined
there, but their content is object specific and unique.

6.1.6 Exemplification of the Ontological Space of Data

In order to exemplify and substantiate the Ontological Space of Data, a short clas-
sification of two projects presented in Section 3 is given; Relation Browser++ and
D-SIFT. The projects are demonstrated in the following analytical way:

1. define and classify data components,

2. define explicit structures among the components,

3. classify visualizations, and

4. describe navigation and transition.

Classifying Relation Browser++

Relation Browser++ is a typical faceted browser. Data components are facets, values
and objects. There is no hierarchy among facets or values, nor explicit relations
among instances. The classification of this data components is the same as in
Figure 6.1.

Facets are selected from a drop-down menu and only three of them can be seen
simultaneously. Thus the facet list is settled in the Region Cluster-Model. Relation
Browser++ does not deliver a holistic overview on all facets and values at once.
Values are also shown as a list, but every value uses a numerical as well as a graphical
representation for information from a quantitative analysis.

Results of a faceted search are represented in a list that shows the object name and
assigned facet values. The result list can comprise all objects from the data base or
just a single one, depending on the current query.

The only view transition that exist in the interface is the change of visible facets.

As seen from Figure 6.3, no explicit information is provided about a realization of
the model or correlation among values. To obtain this information the user must
browse the data set and compare the values by her own.
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Figure 6.3: Classification of interface components and visualization of Relation Browser++
into the Ontological Space of Data. The black arrow shows a change of the same view,
dashed arrows show an influence of one view to another.

Classifying D-SIFT

The four interface components of D-SIFT are (1) drop down menu for selecting the
data source, (2) two lists for choosing facets and attributes respectively, (3) a lattice
and (4) a list for the currently selected attributes (cf. Section 3.3).

Data components are the same as for faceted browsing: objects, facets and values.
There are no explicit relations among objects and no facet hierarchy exists.

Figure 6.4 shows the visualizations and interface components of D-SIFT. Facets
and values are shown in two independent lists. These lists can be scrolled so that all
facets and all values can be observed. If the user selects values, the concept lattice is
adapted and can grow larger or shrink, depending on the values. The lattice belongs
to the realization because it shows how the selected values do occur and correlate
within the data set. The smallest sub set of instances is represented by a formal
concept.

There is no common representation or detailed descriptions of the objects, shown by
the question marks in Figure 6.4.

The exemplification of the Ontological Space of Data by Relation Browser++ and D-
SIFT shows a method for classifying arbitrary visualization environments in the OSD
and evaluates methods for visualizing different data components. It also demon-
strated that none of the presented projects cover all regions of the OSD. Even more
interesting is that each of them covers something the others do not and that similar
visualization patterns occur.
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Figure 6.4: Classification of D-SIFT into the Ontological Space of Data.

6.2 Facettice Environment

This chapter presents the general concept of Facettice by means of the Ontological
Space of Data. Then, an evaluation of an interface metaphor is made, in order to
define a narrative and graphical framework. This section also explains the minor
interface compo f Facettice, a Dynamic Taxonomy view and the representation of
search results.

Two conclusions result from the definition of the Ontological Space of Data. First,
to give a holistic access to a data set, every region in the model has to be taken
into account. The second conclusion is that a visualization can cover aspects from
different regions, as seen by the growing and shrinking lattice in D-SIFT. Facettice
proposes interface components and visualizations for all regions within the model,
by keeping the transitions as seamless as possible. Of particular interest is the
connection between the model and realization as well as visualization of the realization
regions.

It follows a classification of component from the DelViz Visualization Taxonomy into
the Ontological Space of Data, considering an integration of faceted navigation and
FCA.

6.2.1 Data Components

As explained in Section 5.1, the DelViz Visualization Taxonomy consists of a two-
level facet hierarchy and no value hierarchy. Objects are visualization projects with
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a title, pictures, a textual description and an URL pointing to the web page.

6.2.2 Relationships

There are no explicit relations between visualization projects in the DelViz data set.
The structure of the data model is a strict hierarchy without multiple inheritance. It
means that facets have only one super facet and values belong to only one facet.

An implicit relationship is that objects can be classified by arbitrary facet values,
also from the same facet. Another relation is that objects are clustered by similarity
when the user constrains facets. According to a faceted navigation and browsing
process, the query alters. It changes the current instance cluster as described by the
navigation modes in Section 4.5. While "traveling" from concept to concept, the
user discovers more of the data set.

6.2.3 Views

The data set of the DelViz Visualization Taxonomy divides into three major parts
which are the facet and value hierarchy data model, the project instances and the
search space made by concepts and represented by a concept lattice. Figure 6.5 gives
an overview of the views used in Facettice to cover the whole Ontological Space of
Data.

Facet and Value Hierarchy View

The facet and value hierarchy is an important part of every faceted browser and has to
be clear and accessible everywhere in the application. In Facettice, a horizontal tree
representation is chosen, shown in the upper left corner of Figure 6.5. The hierarchy
is comprised of three top facets, than sub facets and finally the facet values. Values
can be restricted directly by clicking them.

The tree representation gives a holistic overview of all possible facets and facet
values. Expanding and collapsing tree nodes ensure clear overview and detail at the
same time. Values are distinguished from facets by an italic font face.

In order to support query preview and allow a quantitative analysis of the model,
numbers of remaining objects for each facet value are indicated. This design pattern
is well known and heavily used in other applications (cf. 4.6). Numbers at facets
indicate the amount of facet values, independent from their level in the hierarchy.
Although the different application of numbers in the case of facets and facet values
seems confusing, the effect is lowered due to differences in the type face of facets
and facet values. All numbers are updated each time the user changes the query,
representing the dynamic taxonomy. The whole hierarchy visualization is extensible
to an arbitrary amount of facets, values and hierarchy levels.
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Figure 6.5: Classification of visualizations and interface components of Facettice in the On-
tological Space of Data. Black arrows indicate direct transitions while dashed ones describe
an influence.
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Values of facets which do no longer occur in the current result set, are faded to gray.
They are not pruned to keep the general overview of all data model components.

The facet and value hierarchy visualization is a generic solution for delivering a holistic
overview on the data model as well as specifying single values and get feedback about
further queries in the form of a qualitative analysis.

Result Presentation View

Aspects of regions VII to IX are treated within an own interface component because
displaying objects within the hierarchy or a concept lattice would over-stress those
visualizations. Dealing with objects in a separate interface component gives larger
freedom to represent them in an appropriate manner.

Since there are no explicit relations between the visualization projects they are dis-
played in a list, ordered alphabetically, for instance. Any project in this list consists
of its title and a thumbnail, if available. If not, a "no Image" picture is displayed.

A detailed view, which is required to cover region IX Local-Instances, includes im-
ages for projects, a detailed description, applied tags and the URL for accessing the
webpage. The webpage can be accessed directly from Facettice delivering additional
information. In Figure 6.5 the webpage is shown in the upper right corner.

Big Smart Lattice View

The realization of the complete model can be visualized by the concept lattice of
the complete formal context. Figure 6.5 shows this lattice in Region IV Global-
Realization.

One way to reduce the complexity of this lattice is to show only those parts that are
of interest to the user. While browsing the data set, that is concept by concept, the
concept lattice can support him by showing related concepts and create a general
context for his search (cf Section 4.7).

The are many to ways to create the concept neighborhood for a given concecpt.
While Ulysses uses a fisheye technique, Facettice considers the browser history of
the user and consequently builds the complete lattice.

Facet Lattices View

As mentioned in Chapter 4, a formal context can be reduced by grouping attributes.
Using facets it is easy to create a lattice according to a single facet. Facettice creates
one lattice per facet to enable a focused investigation of the realization of facets in
the data set.

Figure 6.5 shows those facet lattices in Region V Cluster-Realization at the border
to Region II Cluster-Model. They are, indeed, closer to the model than a Big Smart
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Lattice because each lattice represents exactly one facet. The Big Smart Lattice, in
contrary is built upon the direct neighborhood of the current result set.

Complex lattices can also be formed when creating a concept lattice from multiple
facets.

6.2.4 Transitions and Navigation

Big Smart lattice and facet lattices are very similar and since the Ontological Space
of Data defines seamless transitions on the dimensions, a transition between the big
lattice in Region IV and the lattices in Region V are imaginable. Building a lattice
upon all facets yields the big lattice in Region IV and exploring the whole data space,
also yields the big lattice. These transitions can be used in an interface, if desired.
However, Facettice keeps Big Smart Lattice and Facet Lattices seperated in the
interface. First is for supporting the user in search and exploration while the purpose
of the latter is to enable analysis of single facets.

To specify a query, the user can either select values from the omnipresent facet and
value hierarchy or he can use the facet lattices. Both results in an adaptation of the
Big Smart lattice. In order to make the user independent from the facet and value
hierarchy and the facet lattices, he also must be able to restrict facets within the
Big Fat Lattice. The Big Fat Lattice as well as the Facet Lattices are described in
Section 6.3 and 6.4.

The separate result view is adapted to each new query, as well. By selecting a project,
the detailed description is shown and the webpage can be accessed.

6.2.5 The Metro Map Metaphor

Metaphors help understanding complex and unknown ideas or systems by relating
them to something known. Since concept lattices are naturally unknown to most
people, it is made the attempt to apply an interface metaphor and reuse solutions for
equal problems . Beyond increasing usability of concept lattices, the metaphor also
serves as a repository for graphical solution in information visualization and further
extensions of Facettice.

The landscape metaphor for FCA, was already described by Wille, although in a
rather loose way [Wille, 1999]. An extensive application has not been investigated
so far. Also the landscape metaphor is ample and has to be exploited carefully.

Since Harry Beck invented "modern" metro map design, those maps are graphically
simple by remaining powerful in their function (cf. [Garland, 1994]). A metro map
is an (1) overview plan of a territory that (2) can be traveled/cruised in (3) many
different fashions, (4) leading successively from one point to another, (5) allows
changing routes and contains (6) different districts. (8) Close stations lead to close
neighborhoods and sometimes such a map shows (9) landmarks for important places.

The enormous graphical richness and graphical perfection of modern metro maps
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Figure 6.6: Detail of the current parisian metro plan showing graphical codification of stations
and lines.

represent a huge graphical repository reminding Mackinlay’s composition algebra (cf.
[Mackinley, 1986]). It can be used to enhance conventional lattice representation
in the way of information codification as well as visual attraction. Graphically a
metro maps need to distinguish between different types of stations (differing in form
and size), track lines (differing in color, thickness and texture) and terrain (river,
landmarks).

Most of these aspects also hold for concept lattice representation and graphical
solutions can be adapted. Figure 6.7 shows a simple graphical mapping by using
concepts as stations and mapping attributes to metro lines. A metro attribute line
is defined by connecting all concepts where the particular attribute is part of the
concept intent. Indeed, the result reminds more a network than a linear metro
line but also metro lines contain furcation and cycles. This fact may be the most
confusing one when applying the metro map metaphor to concept lattices. To lower
visual clutter, top and bottom concept have been omitted since in this example they
bear no additional information.

The intent of a concept can easily be determined by following each related metro line
to the top. Another effect is, that the distribution of attributes within the lattices
is visible. In the example on can see that alcoholic and nonAlcoholic do not
correlate and that hot implies nonAlcoholic.

Districts within a metro map can refer to attributes, since the attribute distribution
defines the layout, or can emphasize concept clusters. Clusters in lattices are a closely
related concepts. In Figure 6.7, three districts are shown, emphasizing clusters that
are specified by particular attributes and at the same time giving the lattice a very
particular appearance. s

The metro map is not an unambiguous metaphor for lattice visualization. A metro
map serves for estimating the shortest path from one station to another. Although
in lattice visualization, such a question is of interest concerning the similarity of two
concepts, the continuos branching can be misleading. Another problem is the amount
of attributes and the fact that the intent of infimum close concepts, is large. This
results in a huge correlation of colors and reduces readability significantly.

The main motivation for applying the metro metaphor to lattices is not to copy
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Figure 6.7: Application of the metro map metaphor to concept lattices. Each attribute is
represented by a colored line that connects all concepts where the particular attribute is part
of the intent. The gray and white squares in the background emphasize clusters.

metro maps and create one big colored lattice. The idea is to use colored lines,
stations and districts in order to approach a better understanding and information
codification in concept lattices. The following sections refers back to this metaphor
and address particular problems.

Application of the Metro Map Metaphor

Color can not be applied to facet values because the DelViz Visualization Taxonomy
contains 63 facet values. It is impossible to assign a single color to each of them
that remains distinguishable.

Facets can be color-coded, which is a common design patterns in faceted browsers
(cf. Section 4.6). Colors serve for two purposes. They enables an application wide
consistent identification of facets as well as faster recognition. In terms of Bertin’s
and Mackinlay’s classification of data, facets are equidistant or nominal (cf. [Bertin,
1973, p.43ff] , cf. [Mackinley, 1986, p. 111] ).

Colors are equidistant as well and do not inherit a natural order. Other visual variables
either imply an ordering, such as lightness or size or are sometimes difficult to apply
like position. Although color is limited in its extend to represent equidistant data, an
advantage is that color can represent hierarchical data to a certain extent. A natural
order among colors exist only according to the wave length of light. This order is
sometimes used in information visualization to show large ranges.

For the Visualization Taxonomy the application of colors works well as demonstrated
in Figure 6.8. The figure shows three different realizations of a color hierarchy. The
right representation is realized in Facettice. Values are indicated by the color of its
direct facet and are shown without color in the hierarchy.
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(a) Horizontal Hier-
archy

(b) Radial Hierarchy (c) Tree in Facettice

Figure 6.8: Color hierarchy for facets as used in Facettice. The left figure illustrates a
horizontal layout, the center figure illustrates the appearance using a radial layout and the
right figure represents the integration of colors into the facet and value hierarchy tree of the
interface.

6.2.6 General Layout

Figure 6.9 shows the layout of Facettice with its components (A) facet lattices
showing one lattice per facet, (B) the facet and value hierarchy, (C) the Big Smart
Lattice and (D) the result list showing the resulting visualization projects. The facet
lattices and the context lattice are the two main parts of Facettice and are described
in detail in the next chapters.

The four components are furthermore synchronized by brushing and linking (cf.
[Keim, 2002]). It means that a selection in one view causes a highlighting in the
other view. Also, if one view changes, the others are changed as well. This allows a
consistent view on the data and enables focusing on particular views. Facet lattices,
facet and attribute hierarchy as well as the result list can be hidden by the user, in
order to better use the screen real estate for the big lattice.

6.3 Facet Lattices

The Facet Lattice component contains one lattice for each facet that has no further
sub facets. The attributes that define the formal context, are the facet values of this
particular facet. This component arises out of the idea to show the interrelations of
facet values. A hierarchy can not show correlation among its values. This is done by
this visualization and has many benefits and leads to new approaches in visualization
and interaction.
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Figure 6.9: Principle layout of the Facettice interface containing the components (A) Facet
Lattices, (B) facet and value hierarchy, (C) Big Smart Lattice and (D) result presentation.

In FaIR, Priss already uses lattice structures in order to display and retrieve ob-
jects from a faceted data set (cf. 3.3). But while she relies on a taxonomy,
Facettice shows complete lattices. Figure 6.10 shows three concept lattices cre-
ated from the facets Interaction/Control Move, Visualization/Updating and
Visualization/Dimensions from the DelViz Visualization Taxonomy. The top
concept contains all objects of the data set and the numbers within the concepts
represent their extent. The bottom concept is pruned if it is not realized.

A comparison reveals different structures and characteristics that occur among facets
and let draw conclusions about their semantics in terms of a realization as described
with the Ontological Space of Data. The facet Updating, for instance, is mutually
exclusive. There is no interrelation between the facet values and the lattice looks
like a taxonomy. In contrast, Control Moves contains well distributed facet values.
A value from facet Dimensions is assigned to almost all projects and they are either
2D or 3D1. Just in eight cases, both dimensions appear.

Besides the amount of formal attributes, which is given, the shown lattices and hence
facets, differ in the following individual aspects:

1. Amount of concepts Apart from the attribute amount itself, many concepts
indicate high interrelation. Although facet A in Figure 6.10 has only one at-
tribute more than facet B, its lattice has more than three times more concepts,

197 + 558 - 2*8 = 639 objects are either labeled 3D or 3D
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Figure 6.10: Schematic view on three facet lattices from the DelViz Visualization Taxonomy

neglecting the top concept. There is a higher rate in combining values of this
characteristic. For the particular facet or characteristic, it means that Control
Moves are independent from each other, while every visualization can only be
updated according to one method.

2. Depth of Lattice The depth of a lattice in dependence of the amount of
attributes, is an indicator for the completeness of combination. Lattice A
shows that the data base does not contain any objects using all interaction
types. Lattice C is complete and all possible combinations of values occur in
reality.

3. Interrelatedness The amount of concepts is not necessarily the only indicator
for relatedness of a facet. Lattice B and C have the same amount of concepts,
nevertheless lattice B shows no relatedness among the facet values, while the
facet Dimensions share at least eight common objects.

4. Concept size In Facettice, the top concept always shows the number of all
objects within the data base in order to be consistent among all Fact Lattices.
Thus, it also contains objects that do not satisfy one single value from this
facet. In general, the size of the extent of concepts is very important and
helps distinguishing general and specific facet values. In lattice C, there are
more than five times more objects within the data base that have only two
dimensions than three.

5. Balance and Clusters None of the example lattices is balanced, except a sub
lattice from lattice A built by considering only Click, Pan and Point. A facet
is called balaced if all its values are applied in equal number. This sub facet
can also be denoted as cluster, because its inner interrelation is far stronger
than its outer one. Clusters indicate strong correlation among its items.

An equilibrated facet describes a characteristic which’s values are equally dis-
tributed and occur in arbitrary combinations like combinations in playing dice.

6. Correlation Lattice A shows a correlation between Pan and Point in approxi-
mately one fourth of all cases. This is indicated by the concept containing 26
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objects.

7. Implication In Lattice A there is an almost complete implication between the
the values Point and Click, because 82% of all projects that use pointing,
also use clicking. This is indicated by the concept containing 73 objects.

Most of the characteristics are hard to figure out when lattices are presented as in
Figure 6.10. For that reason, more information must be encoded into the lattice
representation. The next section describes which information is used and how it is
encoded. Interaction techniques with facet lattices are described at the end of this
section.

6.3.1 Information Codification

In order to answer the above listed questions, the following list shows all data and
meta-data that is available to be encoded visually. As already mentioned, represen-
tations of formal objects are treated apart from the lattice and only their amount is
considered here.

• Relative concept size (support) The support is the relative size of the concept
extent in comparison to all formal concepts in the database. The support is
indicated as percentage value (cf. Section 2.3.2).

• Absolute concept size This measurement helps clarifying what part of a con-
cept is actually apparent. Regarding Lattice C in Figure 6.10 projects have
been labeled 2D of which eight are also labeled 3D. Thus, 89 projects are solely
labeled 2D. While in this particular lattice, such a calculation is easy, this cal-
culation for lattice A is almost impossible by hand.

• Intent Figure 6.10 only shows attributes at the corresponding attribute con-
cept. In large lattices it is hard to follow their distribution among all concepts.

• Size of intent Noticing the amount of attributes at a glance helps estimating
correlation and implication.

• Confidence Confidence is the percentage of common objects that in relation
to the extend of the parent concept. It is a sign of implication, as in the case
of Point and Click in lattice A.

• Common objects The absolute number of common objects between parent
and child concept helps determining flows and clusters within the lattice.

The graphical components of a lattice are the same like in ordinary networks; Nodes,
relations and labels. Labels are embodied directly into nodes or relations. In the
following an information codification in nodes and relations is described.

82



6.3 Facet Lattices

Figure 6.11: Comparing possibilities for concept and relation representation.

Concepts

Most lattice representations use circles for representing concepts. Only Ulysses and
Conflexplore use rectangles for better placing object and attribute names inside (cf.
Chapter 3). It has been made a comparison between three shapes, circle, square and
Rectangle. In order to compare which one shows best the differences in size. The
size of concepts depends on the size of their extent, as explained later.

Circle and square are trivial shapes while the rectangle results from mapping the size
of objects to the vertical extension of the rectangle and the size of attributes to
the horizontal extension. Consequently, the resulting lattice shows a clear transi-
tion of vertically oriented rectangles on the top of the lattice, over almost squares
to horizontally oriented rectangles at the bottom. Although this mapping delivers
promising figures, it is hard to compare sizes of extents. The perception is biased by
the area of the rectangles. The concept directly above the bottom concept seems
larger then the concept above but has fewer objects. Further investigation on the
rectangle shape must be done but is beyond the possibilities of this paper.

For Facettice the circle was chosen, since it is closer to the metro metaphor and
makes the lattice appearance calm, in comparison to square and rectangle.

According to the investigations of Bertin and Mackinlay quantitative data is best
coded visually by size or length (cf. [Bertin, 1973] ). Several mapping functions can
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Figure 6.12: Demonstration of mapping a value v to the radius r of a circle by using the
function r =

√
v . The nested circles show the difference in size in an alternative view and

the diagram shows the progress of the mapping function.

Figure 6.13: Four states of a visualized Facet Lattice; default, selection of one concept,
selection of two concepts and adaption.

be applied to map the number of objects v to the size A of a circle. The formula for

the circle surface is A = 2r 2π, which becomes r =
√

A
2π

and conforms to the ratio

r =
√
v . Figure 6.12 demonstrates the difference of circle size using this function.

This mapping corresponds well to human perception while maintaining low calculation
time. It is applied for the nodes in the Facet lattices as well as for the nodes of the
Big Smart Lattice, which is described in Section 6.4.

Relations

Relations can encode confidence and the amount of common objects. Since confi-
dence is a relative value, it can be mapped to lightness. On a white background, a
black relation signifies conf (c) = 1 and white means conf (c) = 0. The number of
common objects corresponds directly to the support of the child concept and is best
mapped to the thickness of relations. The last three rows in Figure 6.11 demonstrate
these mappings. The last row shows the combination of support mapped to thickness
and confidence mapped to lightness. The last row also shows, that in combination
with confidence and support, circles are best to represent concepts. The left most
lattice in Figure 6.13 shows the visualized lattice from facet Interaction/Control
Moves.
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6.3.2 Interaction with Facet Lattices

The primary interaction purpose of facet lattices is the selection of concepts. By
selecting an arbitrary concept the corresponding intent is added to the current query
of faceted values and the resulting objects are shown within the result presentation
component. Figure 6.13 shows the four states of a lattice Default, Single Selection,
Multiple Selection and Adapted. An additional interaction technique is to combine
facet lattices.

Highlighting Every concept can be hovered which causes all parent and all child
concepts to be highlighted as seen in Figure 6.13 Lattice B. A highlighting of the
parent concepts shows where the position of the particular concept in the attribute
hierarchy. This is important since attributes are only shown once in a lattice. Child
concepts indicate the distribution of other attributes among the extend of the hovered
concept.

Selection Selecting a concept leads to a fixation of the highlighted concepts. This
allows to highlight other concepts and see concepts which are highlighted by both
selections, as shown by Lattice C. Another effect of multiple selection is that queries
can be visualized, as explained in Section 6.3.3.

Adaptation As soon as the current query changes, either by selecting a concept
in a facet lattice or in any other way, all Facet Lattices are adapted to the new
sub context. The new sub context contains only objects that satisfy the new query.
Lattice D shows the adapted lattice for selecting the concept with the intent {Click,
Point} in Lattice B.

Combination Until now, only one lattices per facet has been considered. This
makes the question "Are red cars faster than blue ones?" impossible to answer be-
cause color and speed are two different facets. Facet Lattices can be combined and
create a new concept lattice that shows the formal context based on both sets of
facet values. Values from both facets are distinguished by the color of the corre-
sponding facet.

In Facettice this is done by dragging one lattice onto another. A new lattice is
created from the sub context containing the attributes from both facets. Facets in
the new lattice are distinguished by color as shown in Figure 6.14, where the concepts
ab and bd are selected.
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Figure 6.14: Two selected concepts (filled circles) within a Facet Lattice and the three regions
AND, OR and NOT which are created. The letters are the attributes in each intent. Colors
are do not correspond to facets, they distinguish both concepts.

6.3.3 Query Visualization

When two concepts p1 and p2 are selected within a lattice, the lattice divides into
several regions. A region is a group of connected concepts. Two concepts ab and
bd are selected in Figure 6.14 and three particular regions are shown. Those regions
correspond to boolean queries of the intent of the both pivot concepts. In Figure
6.14, the concepts labeled according the attributes in their intent.

OR-Region The OR-Region contains all child concepts of the pivot concepts as
shown in Figure 6.10. Formally the OR-Region is described by the query int(p1) ∨
int(p2), whereby int(c) is the boolean AND query of all attributes from the intent
of concept c . If an intent of a lattice concept matches this query, the concept is
part of the OR-Region.

In the example in Figure 6.10 p1 = ({ab}
′
, ab) and p2 = ({bd}

′
, bd). The concepts of

the OR-Region are ab, bd, abc, abd, bc, abcd because their intents match at least
the query (a ∧ b) ∨ (b ∧ d). The concepts abc and abcd contain the additional
attribute c . One purpose of regions is to group concepts and hence attributes. The
example shows that the objects in the OR-Region also are classified under c.

The objects of this region are equally retrieved by the conjunction of the extents
of the pivot concepts, formally ext(p1) ∪ ext(p2), where ext(c) is the extent of
concept c . Table 6.1 summarizes the formalization for all regions described in this
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Region Boolean Query Set Operations

OR int(p1) ∨ int(p2) ext(p1) ∪ ext(p2)

(a ∧ b) ∨ (b ∧ d) {ab}′ ∪ {bd}′

AND int(p1) ∧ int(p2) ext(p1) ∩ ext(p2)

(a ∧ b) ∧ (b ∧ d) {ab}′ ∩ {bd}′

NOT ¬(int(p1) ∨ int(p2)) ext(T ) \ (ext(p1) ∪ ext(p2))

¬((a ∧ b) ∨ (b ∧ d)) al lConcepts \ ({ab}′ ∪ {bd}′)

Table 6.1: Query regions inside the concept lattice in Figure 6.14 for the concepts p1 =
({ab}′ , ab) and p2 = ({bd}

′
, bd)

section.

AND-Region This region contains all concepts whose intent satisfies at least the
query int(p1) ∧ int(p2). That are all concepts which are children of both pivot
concepts. In Figure 6.14 those are concepts abc and abcd .

NOT-Region By definition, the NOT-Region contains all concepts and objects
that are not within the OR-Region.

Every concept can be classified into one of these three regions. The extents of the
concepts correspond to the query of their region. Visualizing the regions shows the
user not only if there is an AND-Region and how the OR and NOT-Region are shaped
but also what further attributes occur inside every region. The lattice in Figure 6.10
contains all combinations of attributes, thus the attribute c is contained in every
region. But, examples are possible where c does only occur in the AND-Region,
which means a ∧ b ∧ d ⇒ c .

Query visualization is not limited to facet lattices and can applied to all concept
lattices. Although the definition of regions is not yet completed, this section demon-
strated the idea of lattice regions and query visualization. The three regions can
likely be subdivided to yield more precise statements about concepts, attributes and
objects within. However, a deeper investigation is beyond the scope of this thesis.

6.4 Big Smart Lattice

The Big Smart Lattice is the second major part of Facettice. As described in Section
6.2.3, the complete lattice for the whole data set results in a "Big Fat Lattice (BFL)",
to adapt Schraefel and Karger’s notion of the "Big Fat Graph" (cf. [Schraefel and
Karger, 2006]).
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The Big Smart Lattice (BSL) shows only the part of the BFL that is the context
of the current focus. While the user explores the data, the BSL grows and shows
visited concepts and its neighbors. That way, an individual concept lattice is created
that reflects the user’s way and her perspective on the data.

The BSL supports search and exploration because it shows neighbors of concepts
and the concepts the user has visited. Data analysis is supported in two ways.
First, concepts can be compared directly and second, arbitrary facet values can be
combined.

This section discusses the four conceptual parts of the Big Smart Lattice, which
are (A) methods for successive construction, (B) the representation of concepts,
(C) the representation of relations between concepts and (D) a visualization of the
users search history which comprises visited concepts. All representations must be
integrated in the same visualization and their development influences each other.

6.4.1 Construction Methods

Iceberg lattices, D-SIFT and Ulysses present different techniques to reduce concept
lattices. They show only the part that is currently most interesting to the user (cf.
Chapter 3).

Facettice makes a different approach. If the user changes the current query by
selecting a concept from the facet lattices or the facet and value hierarchy, a new
concept is created and added to the BSL. If the particular concept already exists, it
is focused. In both cases the focused concept represents the current query and the
user’s "position" within the lattice. In addition to the new concept, its neighbors and
relations are added implicitly. The process of implicitly adding concepts or relations
is called inference.

The BSL starts with the top concept which comprises all objects and an empty
intent. Is is the common reference for all further concepts and queries. Four ways,
or levels, have been developed to construct a BSL and infer neighbored concepts.
The simplest way does not infer any neighbors and only adds new concepts which
correspond to a user query. The other levels increase the number of inferred concepts
and relations.

No Inference

Without inferring, only those concepts are added to the lattice, which arise from a
new query. The left four lattices in Figure 6.15 illustrate the lattice creation without
inference. Concept as well as relations are created explicitly by the user. This method
causes no confusion but neither delivers any additional information about the relation
of concepts. Even if concept b in Step 3 is related to the top concept T , the relation
is not drawn. Only if the user proceeds to the top concept it occurs.

This construction level only visualizes the way the user has taken. It is a direct
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Figure 6.15: Demonstration of the lattice construction using no inference (left) and first
level inference (right). The user first poses the query a, then zooms in to ab, zooms out to
b and in the left case zooms out again to the empty query. Blue lines mark explicit relations,
the red line is an inferred relation.

representation of the Berry-picking model (cf. Section 2.1.2).

First Level Inference (Relation Inference)

On a first level only direct relations are inferred. Two concepts are directly related
if they are in a sub concept relationship. The right three lattices in Figure 6.15
illustrate a first level inference. In contrast to no inference, the user does not need
to zoom out to the top concept T in order to create the relation between concept T
and b. The relation is inferred because b is a sub concept of T . Algorithm 1 shows
first level inference in pseudo code.

Algorithm 1 First Level Inference
1: for all concepts do
2: isRelated := subConcept(newConcept, concept)

OR superConcept(newConcept, concept)
3: if isRelated then
4: createRelation(newConcept, concept);
5: end if
6: end for

A first level inference does not create additional concepts, it keeps the lattice small
and adds relations that are obvious. It creates a more contextual picture of the
lattice than achieved without inference.

Second Level Inference (Attribute Inference)

On a second level, concepts are inferred only if a new attribute occurs in the lattice
as shown in Figure 6.16. Algorithm 2 shows the algorithm. As soon as the attribute
b is added to the BSL context, a concept with the intent b is created and related to
the concept that was created by the user, ab. If the user creates the concept abc ,
the concept c is added to the lattice in order to relate abc to T .
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Figure 6.16: Illustration of a second level inference for constructing a Big Smart Lattice

No concept is inferred if the user does not add new attributes to the context as in
steps 4, 7 and 8. In that case, relations are inferred based on first level inference.
As shown in Line 7 of Algorithm 2, after inferring on level one, transitive relations
must be pruned.

Shown in Figure 6.16, the resulting lattice stays small because few concepts are
inferred. The inferred concepts create a minimal but useful frame for the user. If
concepts are inferred he widens his current context and if no concepts are inferred,
he remains within the frame spanned by the attributes.

Algorithm 2 First Level Inference
1: if newAttributeAppears() then
2: attributeConcept := createAttributeConcept(newAttribute) ;
3: createRelation(topConcept, attributeConcept) ;
4: createRelation(newConcept, attributeConcept) ;
5: else
6: inferenceFirstLevel();
7: adaptTransitiveRelations();
8: end if
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Figure 6.17: Illustration of a third level inference for constructing a Big Smart Lattice
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Third Level Inference (Neighborhood Inference)

Second level inference causes inconsistency in terms of actual lattice theory. When
a relation to an attribute concept is inferred, no concepts in between are ignored.
The only rule second level inference follows, is that each concept must have super
concepts for each attribute from the intent. It is not required to infer all super
concepts. But, this results in an inconsistent lattice. In Step 3 of Figure 6.16
concepts ac and bc are missing. If c ⇒ a ∧ b, there would be no concept c .

To solve this problem, third level inference infers all upper concepts, as illustrated in
Figure 6.17. Step 3 demonstrates the difference to second level inference, because
concepts ac and bc are inferred. Also Step 5 calculates the complete lattice above
the new concept. Concepts that are below the new concept are not inferred to not
calculate the complete lattice.

The algorithm is simple as described by Algorithm 3. First, a new sub context from
the intent of the new concept is created. In this sub context, the new concept is
the bottom concept, because its intent contains all attributes from the sub context.
Finally, the sub lattice is included into the BSL.

Algorithm 3 First Level Inference
1: subContext := createContextFrom(intent(newConcept));
2: subLattice := createLatticeFor(subContext);
3: insert(subLattice);

Fourth Level Inference (Complete Inference)

The most complex inference is to calculate the complete lattice every time a new
concept is added. If all attributes are used in a query, the "Big Fat Lattice" is
obtained. Figure 6.18 demonstrates the lattice after 5 steps.

This method creates the maximal context for each concept. It gives a complete
picture of all concepts which exist for the attributes used for querying.

Figure 6.19 directly compares all four inference levels for adding concept bc and then
bcd . The blue concepts and relations are created explicitly, while red concepts and
relations are inferred. A direct comparison reveals the advantages and disadvantages
of every inference level.

By increasing the inference level, the complexity of the lattice grows faster but
delivers a more comprehensive picture of the context. Lower or no inference focuses
only on the current concept and its context while third and fourth level inference
focus on completeness and consistency of the lattice. Consequently, the inference
levels represent a fine grained transition from supporting focalized search and history
visualization (no inference), exploratory search (first and second level inference) until
analysis (third and fourth level inference).
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Figure 6.18: Illustration of a fourth level inference for constructing a Big Smart Lattice.

Figure 6.19: Comparing the results of all inference levels in parallel.
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6.4.2 Concept Node Representation

Since the BSL shows a resticted part of the BFL, information about missing concepts
must be provided. The solution discussed here, is the integration of attributes along
with their facets into the concept representation. It gives the user (1) an idea of
what the current concept is about, (2) possible paths to related concepts and (3) a
better look and feel for interacting with the BSL.

One can make up three classes of attributes for every concept (A) its intent, (B)
attributes within the intent that are completely implied by all the others and (C)
attributes that are not part of the intent but occur at at least one object from the
extent. Depending on the general lattice representation read from top to bottom,
in the following, attributes in the intent are called incoming and attributes from C
are called outgoing. This notion works fine for user interaction since he "reaches" a
concept by specifying its intent and "leaves" it by adding an attribute which is not
yet part of the intent. Attributes under B are part of the intent and are treated equal
to the others.

The best way to integrate attributes and their occurrence into a circle concept rep-
resentation is by laying them out in a circle. Because all attributes are equal, the
circle segments are of equal size. The attribute and facet hierarchy is drawn in the
style of a radial hierarchy as used in Sunbrst (cf. [Stasko and Zhang, 2000] ). Figure
6.22 shows the final representation of the facet and value hierarchy.

Three ideas of encoding information into a concept representation are developed
and discussed in Figure 6.20. All are designed in order to best use the space, give
a hint on their distribution in the BFL and make visual linkage to other concepts
comprehensible (cf. Section 6.4.5). The latter fact is discussed below.

Inner-Outer Representation Shown in Figure 6.20, incoming attributes are dis-
played on an inner circle while outgoing ones are displayed on an outer circle.

This method refers to the fact that incoming attributes are part of the definition of
the concept. outgoing attributes can be chosen to create or visit another concept.
The major advantage of the inner-outer representation is that for placing attributes,
the whole circle can be used.

Top-Bottom Representation An alternative representation is to show incoming
attributes on the upper semicircle and outgoing ones on the lower one. A gap
separates the upper semicircle from the lower one.

This method emphasizes on the reading direction of lattices which is from top to
bottom. Relations to other concepts can be easy interpreted. Another important
benefit of this method is that is works better when considering a hierarchical structure
of facets and attributes as shown in Figure 6.22. A inner-outer representation has
no space for showing a hierarchy.

A major drawback of this method is that outgoing attributes can only be laid out at
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6.4 Big Smart Lattice

Figure 6.20: Three types of representing a concept with incoming and outgoing attributes.
Circle segments represent attributes and colors indicate their facets.

half the space as with the inner-outer representation.

Cake Representation This representation does not distinguish between incoming
and outgoing attributes. All attributes are shown in a cake diagram. The extension
from the inner circle to the outer one, represents the amount of objects within the
concept that are labeled by the attribute. Circle segments spanning the complete
space describe the whole extent and hence are part of the intent.

There are, however, difficulties when an outgoing attribute describes almost all ob-
jects from the intent. An example are the orange attributes in Figure 6.20.

A general problem among all representations is the over representation of color. Top-
bottom shows less color and is not as "nervous" as the cake representation. Also the
fact that top-bottom is read from top to bottom makes it favorable in contrast to the
other two representation. To additionally lower the impact of color an alternatives to
each representation is designed. The upper circles in Figure 6.20 show only incoming
attributes.

The final concept representation used by Facettice is a top-bottom layout for incom-
ing and outgoing attributes, combined with a cake diagram for showing distribution.
Figure 6.21 shows a concept with three attributes in the intent. The hierarchy
among facets and attributes in the example comprises three facets on the top level
as indicated by the inner ring. The top level facets together have seven sub facets.
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Figure 6.21: Concept node of the Big Fat Lattice. Attributes are colored according to their
facet. A value and hierarchy hierarchy is represented by a radial hierarchy.

Figure 6.22: The three interaction states of the concept node, selected on the left, facet
hovered in the center and attribute hovered on the right.

6.4.3 Facet and Attribute Hierarchy

The realization of a facet and value hierarchy within a top-bottom concept repre-
sentation is illustrated in Figure 6.22. A top-bottom representation makes it easy to
create a radial hierarchy. The radial hierarchy does not restrict the hierarchy depth.
Figure 6.22 also shows the final appearance of a concept of the BSL.

The color coding for the hierarchy is the same as used in the facet and value hierarchy
tree component (cf. Section 6.2.5).

Figure 6.22 shows an extended version of the concept node, when the user hovers
circle segments. The first concept node shows the name of incoming attributes. In
the second concept, the user hovers a facet segment and in the last one she hovers
a facet value segment.

6.4.4 Relation Representation

As discussed in Section 6.3.1, sub concept relations between concepts can be used
to codify different information such as support and confidence. This section presents
approaches for coloring relations.

Three different ways to color relations in order to show attribute influence in the
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Figure 6.23: Three different representations to apply color to attributes. Each attribute is
represented by one color.

lattice are developed and evaluated. The influence of an attribute a within a concept
lattice is shown by all concepts where a is part of the intent.

The task is different from coloring relations and concepts in facet lattices (cf 6.3.
While a facet lattice shows the influence of an attribute on demand, the BSL must
use colored lines by default. Figure 6.23 presents three approaches to color relations,
independently from a selected concept.

First Appearance A colored path starts from the most general concept the at-
tribute occurs as shown in Figure 6.23. It leads to the bottom concept by passing
all concepts where the attribute is part of the intent. Attribute d implies b and c ,
hence the path for d starts at the concept labeled bcd .

Step-wise This method shows only the difference in attributes between two con-
cepts. It corresponds to the perception of incoming and outgoing attributes. An
attribute goes from the super to the sub concept, hence is added to the intent of
the super concept and forms a new concept. Vice versa, the same attribute is re-
moved from the sub concept and forms the intent of the super concept. In terms
of "traveling" the lattice, this method indicates possible ways, comparable to links
between web pages.

Complete This methods superposes First Appearance and Step-wise coloring. In
terms of exploring the lattice, this method corresponds best to the metro map
metaphor. A line passes all concepts that are related to an attribute. It also connects
all neighbored concepts of these concepts, because they can can be seen as "final
destinations".

Although the Complete coloring method combines the advantages of the others, it
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can not compete with them, because to much lines and colors are shown. First
Appearance shows well the influence of each attribute within the context by using
less lines than the Complete method. In comparison to Stepwise, First Appearance
it does not contain confusing "open ends" on lines and creates only enclosed areas.

Step-wise however, is a solution to the problem of many attributes that First Ap-
pearance also runs into. Since only the attributes are shown that lead to the next
concept, no line cluttering will occur. Of course, in the case where many attributes
lead to the next concept, multiple lines are necessary, but this is limited to only one
concept relation. Regarding the information value of those methods, again Com-
plete is weakest due to its delimited readability. Facettice uses Step-wise coloring
by default.

6.4.5 Relation-Concept Join

The last problem in order to create the final BSL visualization is the connection
between colored relations and concepts. Last section argued in favor of a Step wise
relation coloring and Section 6.4.2 developed a top-bottom concept representation.
This section discusses ways for combining both representations.

The main argument for a radial top-bottom concept representation is to emphasize
attributes as "entry" and "exit" points of a concept. The same reason motivates a
step-wise relation coloring. To maintain consitency, colored relations must start at
an outgoing attribute and end at an incoming one. Figure 6.24 shows this idea. The
upper concept containing 21 objects has three incoming attributes whose relations
join the concept at their position on the circle. The outgoing attribute Map leads
to a sub concept that has only 10 objects. The relation starts at the same position
on the circle where the segment for Map is located. It joins the sub concept at the
upper part.

The concept with 15 objects is related to the lower concept by the attribute Science.
The example shows how a top-bottom concept relation, a step-wise relation coloring
and a relation-concept join works together.

The lower concept can be "left" by removing Map or Science. The other incoming
attributes in the lower concept can also be removed, and would lead to concepts
not shown in the figure. Which concepts are shown in a lattice is determined by the
inference algorithm (cf. Section 6.4.1).

A new concept is created when the user clicks at an attribute within a concept. If the
user clicks an outgoing attribute, a new sub concept is created and the corresponding
relation as well. If the user clicks an incoming attribute, a new super concept is
created, if it does not exist. That way, the user can create new concepts and queries
independently from other components of the Facettice interface such as the facet
and value hierarchy tree.

The position of a relation from a concept to its sub concept can vary over the
hole lower semi circle, because the starting position of the relation depends on the
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6.4 Big Smart Lattice

Figure 6.24: Example of a relation-concept join using stepwise relation representation. The
dark blue relation labeled Map indicates that by adding this attribute to the concept on
the left, a new concept results with the intent { Gesture, Map, Network and Science}
comprising just 10 objects. The three relations at the the parent concept lead to three other
parent concepts.

position of the outgoing attribute. Section 6.4.3 defined that the order and positions
of attributes in the concepts is fix. This method assigns a unique angle α ∈ [0◦, 180◦)
to every attribute within the context. Since every attribute has a unique angle, one
can create a vector. A concept lattice can be visualized by placing every concept at
the position of the vectors that result from its intent. Lattice A.1 and B.1 in Figure
6.25 show the difference between a justifies and a vector layout.

The advantage of the vector layout is that each attribute is also represented by
orientation, which is one of Bertin’s visual variables (cf. [Bertin, 1973, p.60ff] ).
But, the major problem of the vector layout are relations of two attributes as the
green-yellow relations demonstrates. To solve this problem, the lattice can be relaxed
as shown in Lattice B.2 in Figure 6.25. Relaxing means to calculate a position that
satisfies several attributes. In Lattice B.2, two concepts are shifted so that both
relations, the yellow and the green one are bended equally. As a side effect, also the
blue line is bended.

Still, relations with two attributes do not appear to connect the same concepts.
A solution can be edge bundling as demonstrated in Lattice B.3 in Figure 6.25
(cf. [Holten, 2006] ). Illustration C in Figure 6.25 is a close-up of a concept from
Lattice B.3. It shows how an edge bundling can be realized for two arbitrary attributes
with angels α1 and α2. Point p is the point where both edges are parallel. The join
to the sub concept works the same way.

For Facettice the vector layout is not usable, because the DelViz Visualization Tax-
onomy has to many attributes. When only a part of the lattice is created by using the
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Figure 6.25: Methods and effects on lattice layout and relation appearance for different
relation-concept joins.

inference levels explained in Section 6.4.1, concepts are places far from each other.
To keep the lattice compact and readable, the justified layout with edge bundling
indicated by Lattice A.2 in Figure 6.25 must be used.

6.4.6 History Visualization

The last point to be addressed for an integration of faceted navigation is history
visualization (cf. Section 4.7).

A browsing or search history is the ordered set of queries, which a user has posed
to the data set. In faceted navigation, he changes his current query successively.
Visualizing the history turns into visualizing the order of concepts that corresponds
to the users query.

This section first evaluates graphical techniques to show a sequence of concepts
within a concept lattice and then considers the structure of a history.

Visualization

The last sections already coded much information into the BSL. Therefore, a history
visualization must not interfere with this information. Figure 6.26 shows three simple
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Figure 6.26: Two ways of showing the path the user took while visiting and creating concepts.

methods to visualize a sequence of concepts. The general idea is to show the order
by increasing saturation. Saturation is one of Bertin’s seven visual variables and can
be employed to show an order.

Lattice A colors concepts. Recent visited concepts are saturated, while previous are
diminished in their saturation. Emphasizing concepts is confusing if visited concepts
are very close. Relations between concepts are already completely employed for
illustrating attributes. The background of the lattice serve as an acceptable ground
for developing a history visualization since it has not yet been used. It creates a
second layer in the background. Lattice B applies the same visual codification to the
background of relations. This method reminds more a path and makes it easier to
comprehend the history path.

History Structure

Besides a linear succession of related concepts, three history patterns, or situations,
occur in this user history. Figure 6.27 shows an example history. In Step 1, the user
creates or visits concepts until he does a teleport to a concept that is not related
to the current one. Consequently the path breaks and is continued as in Step 3.
By this step the user re-visits a previous concept and in the next step he choses an
alternative way to a concept that was not visited.
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Figure 6.27: Three situations teleport, re-visit and alternative, which occur while visualizing
the user hierarchy. The numbers within concepts show the order of visiting.
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7 Implementation and
Demonstration

Section 7.1 refers to important implementation aspects of the Facettice prototype,
such as data retrieval, formal context calculation, lattice layout and general metrics.
Section7.2 demonstrates the prototype in respect of the usage scenarios which have
been described in Section 5.2.

7.1 Implementation

The prototype of Facettice is provided as an Adobe Air application1 and runs on
almost every platform as ordinary application2. Only the Adobe Air runtime en-
vironment must be installed3. Facettice is written in ActionScript4 using the Flex5

framework. This decision is based on the ability of Flex to rapid interface prototyping,
event based programming, and good graphical programming possibilities.

The data from the DelViz Visualization Taxonomy is fetched from the Delicious
account via HTTP at every start of Facettice. This guarantees full consistency. On
client side, code from an open source project Delicious API 6 was used as backend
to access Delicious.

For calculating the concept lattices, a minor code part from the OpenFCA project
was reused ( [MIT, ]). It contains a simple and naive algorithm that calculates the
intersections among all formal attributes and puts them in a Spring Graph structure
(cf. [Shepard, ]). The nodes and their connections represent the concept lattice,
which is drawn by Facettice without using any further parts from the Spring Graph
(cf. Section 7.1.2).

7.1.1 Implemented Concepts

The purpose of the prototype is to create a preliminary interface to evaluate the
primary ideas developed this thesis with real-world data. Facettice is not a compre-

1http://www.adobe.com/de/products/air/
2Supported are Windows, Mac OS, Linux and Andriod
3http://get.adobe.com/air/
4http://www.adobe.com/devnet/actionscript/
5http://www.adobe.com/de/products/flex/
6http://snippets.dzone.com/posts/show/6284
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hensive search, browsing and analysis tool. Although, all four interface components
described in Section 6.2 are implemented, some minor concepts could not be realized.

The facet and value hierarchy view is used to restrict facets and give feed back
about the distribution of facet values. The result representation also shows all objects
within the data base and shows additional information on demand. Facet Lattices are
almost completely implemented and can be used for facet navigation, query preview
and adaptation. An combination is missing.

The Big Smart Lattice implements all major concepts like facet and value hierarchy
and relation coloring. As a minor part that does not reveal much feedback for a
further development of Facettice, the history visualization is not implemented. For
Relation-Concept joins, it is used the justified layout with relations starting in the
center of the concepts illustrated in Figure 6.25. It is out of the scope of this paper
to develop and test different relation-concept joints and edge bundling techniques
(cf. Chapter 8).

For successive lattice construction, as presented in Section 6.4.1, no inference is
implemented. Higher inference levels require much more calculation and a complete
implementation is out of the scope of this thesis. The Big Smart Lattice aims in
a first feed back of navigating and constructing a concept lattice. The concept
node representation is completely implemented and can be used to navigate from
concept to concept and create a concept lattice incrementally. Colored lines show
the differing attributes between two concepts and are created using the step-wise
method (cf. Section 6.4.4). The lattice layout is adapted each time a new concept
is created. The next section explains the used layout algorithms.

7.1.2 Lattice Layout

As reported in Section 2.3, different algorithms and methods can be used. YEVTUSHENKO2004
presents different algorithms and compares them. However, the most important prob-
lem in lattice drawing is to minimize edge crossings in order to improve readability
and easy pattern detection.

Currently, Facettice uses a layered approach to draw the facet lattices and the Big
Smart Lattice. It is easier to implement by hand and more flexible in terms of
adaptation. A vector based approach would be very complicated to implement.
Evidently, the treatment of advanced layout techniques is out of the scope of this
thesis. Also, the lattice layout is of minor interest for the concepts presented here.
The layout is independent from the whole Facettice concept and can be changed
later.

To calculate a layout that fulfills the minimized edge crossing criteria, the Barycenter
heuristic was implemented (cf [Mäkinen and Siirtola, 2005]). The algorithm is well
documented an not explained here in detail.
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Figure 7.1: Initial screen of Facettice. On the left, the facet and value hierarchy, Facet
Lattices on top, the Big Smart Lattice in the center and the lists of results on the right.
Within the Big Smart Lattice, the facet value 2D is hovered by the user.

7.2 Demonstration

This section describes the prototype and the created visualizations according to the
three scenarios from Section 5.2. Search and exploration are presented together
because they use similar functions of Facettice. The second demonstration addresses
the analysis of the DelViz Visualization Taxonomy data. However, the focus is to
show how Facettice can support data analysis, rather than analyzing the Visualization
Taxonomy in detail.

7.2.1 Search and Exploration

This section demonstrates how Facettice supports Focalized Search and exploration
of the data set. The initial screen is shown in Figure 7.1, presenting the facet and
value tree hierarchy on the left, the result representation on the right, Facet Lattices
on the top and the Big Smart Lattice in the center.

At the beginning, the BSL comprises only the top concept. It shows at the lower
semi circle the facet and value hierarchy and the distribution of facet values. The
length of bars shows the amount of objects that are classified under a particular facet
value. By hovering the facets and values in the circle, their name is shown. The Top
concept has no incoming attributes because in this particular example, there are no
facet values which classify all objects.
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Focalized Search

First, the user has to observe the facet hierarchy in order to know which facets
and values he can use. In Figure 7.2a the user has selected two values Interactive
from the facet Interactive the and Continuously from Facet Updating and hence
zooms into the data set two times. The Big Smart Lattice created a new concept
for each zoom step. The lower one contains both facet values, its super concept only
the one that was selected first. On the result panel the user can observe the retrieved
objects. Figure 7.1 shows on the right an objects that was clicked to retrieve detailed
information.

According to the nature of concept lattices, a zoom-in is directed downwards, while
a zoom-out is directed upwards. A shift can be directed in both horizontal directions
(cf. Section 4.5).

Assuming the user wants to remove the facet value Interactive. He performs a
zoom-out from the lowest concept in Figure 7.2a. The two ways for changing the
current query are to select or deselect the value within the Dynamic Taxonomy or
directly within a BSL concept. Figure 7.2b shows the BSL after the user has clicked
the upper semicircle of the outgoing attribute Interactive. By clicking an outgoing
attribute the user removes this one from the current intent. A new super concept is
created above the concept containing all kinds of science projects.

By selecting Continuously and then removing Interactive the user performs a
Shift operation (cf. Section 4.5).

Browsing and Exploration

Now the user starts exploring the data set by further interacting with the Big Smart
Lattice. In Figure 7.3a he hovers the outgoing facet value Multi-touch from the
right concept. By clicking, the user performs a zoom-in and a new sub concept is
created as shown in Figure 7.3b. The new concept contains the two multi-touch
projects that use continuous updating for their graphics.

The step from Figure 7.2b to Figure 7.3b is a Slice-and-Dice operation because the
user zooms out and then zooms in on another facet value.

As described in Section 6.3.1, the relations between the concepts differ in their
thickness according the support of the sub concept. The concept for Multi-touch
and Continuously in Figure 7.3b has a thin line to its super concept, while the
concept Continuously and Interactive is connected by a thicker line to the same
super concept. The varying thickness of relations drawn as Bezier curves conveys
the perception of flows. Bezier curves are a mathematical description of curves
with usually one to 2 control points. Those flows spread over the whole lattice and
indicate clusters and trends.

Figure 7.4 shows a BSL after nine query steps and illustrates the flows as well as the
layout algorithm used to draw the lattice. At any time, the user can teleport to any
other concept in the BSL and retrieve its objects. The current focus then is on this
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(a) (b)

Figure 7.2: Construction of a Big Smart Lattice. In (a), the user removes the outgoing
attribute Interacitive and creates a new super concept in Figure (b). The lattice layout
is adapted immediately.
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(a) Hover Multi-touch (b) Create new concept

Figure 7.3: Construction of a Big Smart Lattice. In (a), the user hovers and the attribute
Multi-touch and selects it in order to zoom-in. In (b), a new sub concept is created, which’s
intent is {Continuously, Multi-touch}.

concept and any further navigation is performed from there. This teleport causes a
non-linear history as described in Section 6.4.6.

By observing the lattice, the user gains a picture of his search and exploration process.
He can switch between the queries and see how his queries changed.

Besides changing queries by means of the the Dynamic Taxonomy or within the Big
Smart Lattice, the user can also use the Facet Lattices. Their usage is explained in
the next section because they are much more related to data analysis.

7.2.2 Data Analysis

The BSL as used by the browsing process in the last section, can also be used for
data analysis. The user specifies facet values and create an individual environment.
The lattice can grow large and analyzed after all required concepts and relations are
created. If inference techniques are applied, adding a new value to the BSL causes
parts of the whole lattice to be adapted (cf. 6.4.1).

Lattice Visualization

More powerful for data analysis are Facet Lattices. Figure 7.5 shows four Facet
Lattices of different character. Non realized concepts are omitted from the visu-
alization. Section 6.3 already described general analysis criteria for Facet Lattices
comprising amount of concepts, depth of lattice, interrelatedness, concept size, bal-
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Figure 7.4: Big Fat Lattice after several queries. No inference was used and all concepts are
created by the user.
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(a) (b) (c) (d)

Figure 7.5: Four Facet Lattices of different realization.

ance of clusters, correlation and implication. The facet Modality in Figure 7.5 has
only one value that is not used very often in the data set, indicated by the small
concept and the thin relation. The facet Functions has more attributes with a very
high interrelation. However, there are no more than four facet values used on the
same object, because the lattice has only four levels and no attribute implications
do occur. It can also be seen a large correlation between Pan Shot and Zoom. Their
common sub concept has a very high confidence in respect to both super concepts.

The same as for facet Functions can be said about the facet Interaction Type,
which has been analyzed in Section 6.3 on Page 80. Important is the fact there are
two clusters, one with almost only Gesture and the other one with huge correlation
among the values Click, Drag and Point. Facet View Number is a complete lattice
but with a very strong emphasizes on Single View.

Attribute Implication

Besides correlation, implications among attributes have been stated important for
data analysis (cf. Section 2.3.3). Figure 7.6 shows a facet that shows implication.
The attribute Dialog implies Test Input as well as Multilevel Selection. It
also equivalent to Test Input ∧ Multilevel Selection.

Adaptation

Facet Lattices are adapted each time the user changes a query or selects a particular
concept from the BSL. Figure 7.7 shows how an adaptation changes the Facet
Lattice. Lattice a shows the initial state with the concept Click hovered by the
user. All its child and parent concepts are highlighted in the color of the facet
Interaction Type. If the user clicks a concept in a Facet Lattice, the intent is
added to the current query. Lattice b is the adapted lattice after the user has clicked
the hovered concept. As seen from this two lattices, the adapted lattice is exactly
the sub lattice defined by the clicked concept. Since the attribute Gesture was made
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Figure 7.6: Facet Lattice showing an implication among attributes. The lower right concept
in red shows the additional attribute Dialog within its intent. This attribute does not occur
in the intent of the parent concepts. Hence, if an object is labeld Dialog, it is also labeled
Text Input as well as Multilevel Selection.

mandatory, all other concepts are pruned.

Figure 7.7c shows another adaptation of the same Facet Lattice. In the current
result set, only 6 projects remain classified in this lattice.
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(a) Hover Click (b) Adapted (c) Adapted

Figure 7.7: Adaption of a Facet Lattice. Figure (a) shows the initial lattice with the concept
{Click} hovered. In Figure (b), this concept was selected and (c) shows the lattice after
another facet was restricted.
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8.1 Discussion

This thesis presented Facettice, a novel way of supporting search and exploration
processes by means of interactive concept lattice visualizations and faceted naviga-
tion. It therefore relied on four aspects of integrating both technologies information
visualization, navigation in concept lattices, query preview and history visualization.

As could be shown here, interactive Facet Lattices provide a quick overview of facets
and their realization. They serve for a preliminary data analysis and lowering com-
plexity of the data set by means of facets. So, they can guide the user in choosing
the next query and exploring the data set. The Big Smart Lattice keeps track of
the users interaction and paths through the data. By integrating elements for a se-
lection of facet values directly within the lattice, an integrated interface component
could be created. Both visualizations demonstrate the interplay between navigation
in data and their visualizations. By that it is aspired to make data more tangible and
understandable.

Information visualization is employed to encode information that is important for
making query and navigation decisions. It aims in making concept lattices more
understandable even to users which are unfamiliar with Formal Concept Analysis. The
visualization techniques presented in Facettice are: mapping the size of the concept
extent, the confidence between concepts, coloring facets and reuse colors within
lattices. Also Facettice emphasizes related concepts, visualizes a query preview,
integrates a facet hierarchy within concepts, distinguishes the intent of a concept
from the intent of its child concepts (incoming and outgoing attributes) and finally
designates attributes that make the difference between two related concepts.

Navigation within concept lattices is achieved by two solutions. First, using a concept
representation to proceed to an arbitrary concept not shown in the lattice, lowers
complexity. Second, navigation is supported by successively constructing the concept
lattice. While the first technique makes the user independent from the concept
lattice and lets him navigate freely within the data, the second technique creates an
exploration environment and preserves the navigation history.

Query preview is realized on two different levels. The lower level consists of numbers
and bars associated with each facet value. This technique has already been imple-
mented in common faceted browsers. Because it is a quantitative statement about
the extent of every value, this level is one-dimensional and gives only an insufficient
picture of the next query. By contrast, concept lattices are two-dimensional because
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they show interrelations of facet values for the next and after next query. That way,
the user can avoid dead ends or even skip the next step to reach his destination
more quickly and precisely. Upon the lattice representation he is also able to make
compromises about the results.

The comparison of faceted navigation and Formal Concept Analysis revealed many
similarities and particular strengths of each technology. The strengths of both are
used as an extension of the respective other. The collection of interface design
patterns for concept lattices provides a grounded repository for lattice visualization
and extensions. This collection needs to be extended and adapted in order to establish
a common vocabulary of lattice visualization and its extensions.

The comparison also revealed different kinds of hierarchies, namely intensional hier-
archies among facets and facet values as well as extensional ones which are created
implicitly from the data. Concept lattices use both: conceptual scales as well as
attribute and concept hierarchies. Extensional and intentional hierarchies are an ap-
propriate mean for browsing. While intensional hierarchies present a human-made
top down approach to classify data, extensional hierarchies present a bottom-up
approach, based on the actual data.

Another aspect that the comparison manifested was that each navigation step in
faceted browsing can be interpreted as a change of focus between concepts in a
lattice. The concept lattice does not only serve for visualization of data structures,
but also as a model for navigation.

The definition of the Ontological Space of Data created a common context in which
faceted classifications and concept lattice could be related in many ways. First, the
model explained the role of FCA as analytical mediator between data and its data
model. The realization of data according its data model serves as a particular per-
spective on the data. The division into regions and aspects as well as the proposition
of a visualization process helped to address many particularities of the integration
described in this work. The compound of the facet and value hierarchy view, the
result representation, Facet Lattices and the Big Smart Lattice have proven efficient
in order to cover as many aspects as possible of the Ontological Space of Data.

The purpose of Facettice and its prototype was not to create a holistic faceted
browser or data analysis tool, but rather to develop and to discuss concepts for
an integration of faceted navigation and FCA. The development of concepts, and
their implementation in particular, aimed to learn more about concept lattices in the
context of interactive visualizations. A lot of information for future extensions and
modification has been obtained and described.

8.2 Future Work

Some concepts could not have been implemented so far. This include the inference of
concept neighborhood, history visualization and a holistic solution for combining and
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separating Facet Lattices. Facet Lattices and probably the Big Smart Lattice could
be integrated into other existing faceted browsers in the form of a more elaborated
widget.

The Big Smart Lattice can benefit from alternative representations for concepts such
as tree maps or nested line diagrams to show remaining objects and facet values.
Chernoff faces, for example, could be used to represent different facet values into
a concept representation, instead of using the current representation by the upper
semicircle. Attribute matrices could be a possibility to visualize clusters in Alpha
Galois Lattices.

Further navigation techniques inside the lattice need to be developed in order to
make their construction more intuitive. For now, a concept can only be created but
not pruned from the lattice or be combined with other ones. Different input and
output media can also influence a further development of Facettice. Multi-touch
techniques and the implied navigation methods like rotation and dragging are worth
a further engagement in this direction. The simple interface of Facettice, which
uses mostly graphical glyphs for interaction, could be applied to multi-touch displays
without larger modifications. Large wall-sized displays urge to deal with big lattices
and maintain overview and accessibility.

Multi-touch and wall-sized displays also provoke the question about collaborative
browsing and information visualization with concept lattices. Since a Big Smart
Lattice represents a particular picture to the data, this lattices could be shared,
annotated and re-arranged among users and communities.

However, any further development of Facettice for browsing and data analysis, re-
quires a detailed user study for the developed concepts. Although the successive
construction of concept lattices and the interaction via concepts is not difficult, it
must be investigated how users use these techniques. A paper prototype was built
for the current conceptualization of Facettice at a very low stage of the concept.
Its intention was to figure out the general understanding of construction of a Big
Smart Lattice. It is important to know whether the user relies on the common facet
and value hierarchy representation or whether he prefers to interact directly with the
lattice as possible in Facettice. Another point is up to which size a Big Smart Lattice
can be used efficiently and whether the user understands the changes caused by an
inference and sudden inference of concepts.

In order to drive the process of concept lattice visualization forward, a wider evalu-
ation of FCA software as well as FCA browsers and visualizations seems necessary.
Many of these projects are open source and include already many well elaborated
algorithms, which could be reused. Also the interface design pattern catalog can be
extended and patterns described and contrasted.

A last point to address in a future development of Facettice is the Ontological Space
of Data. A first version of the model has been developed by the author of this thesis,
in the context of a visualization of Semantic Web data. In this thesis, the model was
re-defined and extended to an application of faceted classifications and FCA, but re-
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tains its major design. References to ontologies have been made in Section 6.1. The
emerging motivation is to proof the current design of the Ontological Space of Data
and to extend it as well as detail the process that leads to visualizations. Different
data sets and structures bear different particularities. Specifically ontologies are a
rich source for creating data models as well as expressively describing and relating
instances. This motivates a further application of Facettice towards a visualization
and browsing of large and interconnected data sets from the Semantic Web.

Although data analysis tasks were considered in Facettice the major focus remained
on supporting search and exploration. However, exploiting the potential of concept
lattice visualizations for an advanced data analysis is an open and promising field.
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Glossary

Boolean Query A query whereby different query terms are combined
by the boolean operations AND, OR or NOT, 10

EDA Exploratory Data Analysis, 8

FCA Formal Concept Analysis, ger.: Begriffsverband , 15

Folksonomy Collaboratively creating and maintaining a taxonomy.,
34

Serendipity Observing or concluding something important with-
out by incindent., 7
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