DATA CLEANING & DATA MANIPULATION

PETRA ISENBERG

VISUAL ANALYTICS

WHAT IS "DIRTY DATA"?

BEFORE WE CAN TALK ABOUT CLEANING, WE NEED TO KNOW ABOUT TYPES OF ERROR AND WHERE THEY COME FROM

SOURCES OF ERROR

DATA ENTRY ERRORS

MEASUREMENT ERRORS

DISTILLATION ERRORS

DATA INTEGRATION ERRORS

DATA ENTRY ERROR

LOTS OF DATA IS ENTERED BY HAND

TYPOGRAPHIC ERRORS

MISUNDERSTANDING DATA OR CONVENTIONS

"SPURIOUS INTEGRITY"

"SPURIOUS INTEGRITY"

ENTERING BAD DATA IN RESPONSE TO (OFTEN WELL-INTENTIONED) INTERFACE CONSTRAINTS

"SPURIOUS INTEGRITY"

	8	tep 1	Activ	ity/Eq	uipme	ent Typ	se Step 2: Add a Map Step 3: Additional Details	Add An Activ	rity		
Date of Activity:							Duration:	Activity Details	Activity Details		
<		September 2014					00 : 00 : 00	Igny *			
Su	N-	_		-	-	-		+			
7											
14	1_						5.00				
21	22	23	24	25	26	27	5.62 mi	Activity Type:	Running		
28	29	30					Training Plan:	Equipment Type:	None		
Average Heart Rate (optional): bpm								Route:	None		
								Distance:	5.62 mi.		
								Duration:	-:-:-		

MEASUREMENT ERRORS

SENSOR ISSUES

MALFUNCTIONS

PLACEMENT

INTERFERENCE

MISCALIBRATION

DISTILLATION ERRORS

SOME DATA MAY BE LOST OR COMPRESSED BEFORE IT ENTERS
THE DATABASE

0.345413→0.35 National Price Index→NPI

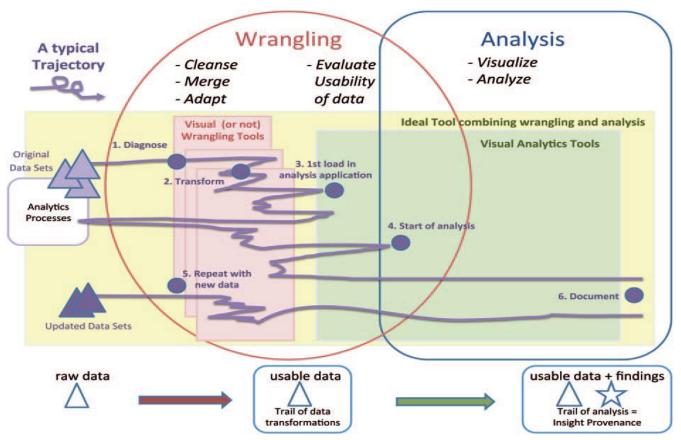
1985, \$2, Apples 1985, \$2, Oranges → 1985, \$2, "Apples, Oranges, Cucumbers" 1985, \$2, Cucumbers

DATA INTEGRATION ERRORS

DATA OFTEN COMES FROM MULTIPLE SOURCES

SCHEMAS CHANGE OVER TIME

DATA IS OFTEN COERCED FROM ONE TYPE TO ANOTHER


CAN LEAD TO DATA LOSS, DUPLICATION, AND OTHER

WHY IS THIS IMPORTANT?

MOST OF THE TIME IN THE DATA ANALYSIS PROCESS IS ACTUALLY SPENT HERE!

"I spend more than half my time integrating, cleansing, and transforming data without doing any actual analysis. Most of the time I'm lucky if I get to do any 'analysis' at all."

ANALYSIS TRAJECTORIES

KANDEL ET AL. 2011

SOME DATA QUALITY ISSUES

MISSING DATA

MISSED MEASUREMENTS, REDACTED ITEMS, INCOMPLETE FORMS, ETC.

ERRONEOUS VALUES

MISSPELLINGS, OUTLIERS, "SPURIOUS INTEGRITY", ETC.

ENTITY RESOLUTION

DIFFERENT VALUES, ABBREVS., 2+ ENTRIES FOR THE SAME THING?

TYPE CONVERSION

E.G., ZIP CODE OR PLACE NAME TO LAT-LON

DATA INTEGRATION

MISMATCHES AND INCONSISTENCIES WHEN COMBINING DATA

SOME APPROACHES FOR IMPROVING DATA QUALITY

TOOLS FOR MANIPULATING AND CLEANING DATA

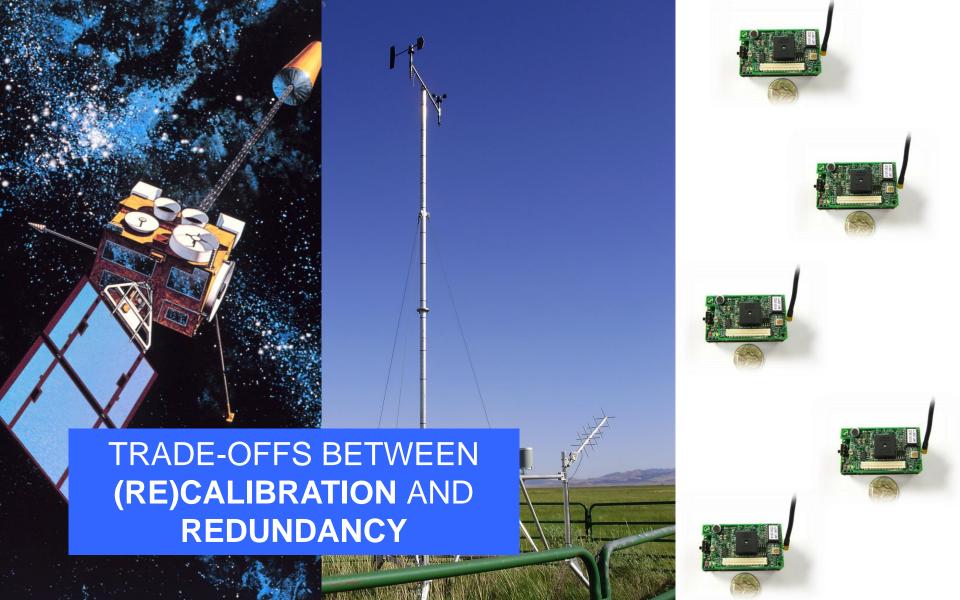
SOME APPROACHES FOR IMPROVING DATA QUALITY

TOOLS FOR MANIPULATING AND CLEANING DATA

PREVENTING ERROR

CATCHING DIRTY DATA AT THE SOURCE

MINIMIZING SENSOR ERROR


CALIBRATE AND VERIFY SENSORS

CHECK SENSORS BEFORE DEPLOYMENT (AND PERIODICALLY REVALIDATE THEM)

USE REDUNDANT SENSORS

CHECK DATA AGAINST HISTORICAL LOGS OR COMPUTED MODELS

REDUCING ERROR DURING DATA ENTRY

DOUBLE DATA ENTRY

PERFORM ALL DATA ENTRY TWICE

(IDEALLY BY SEPARATE PEOPLE)

<u>IDENTIFY MISMATCHES</u> AND DISCARD OR REPAIR (VIA VOTING OR RE-ENTRY)

INTEGRITY CONSTRAINTS

This field is required.

TEMPERATURE

INTEGRITY CONSTRAINTS

Temperatures must be between -50°C and 50°C.

TEMPERATURE

INTEGRITY CONSTRAINTS

TEMPERATURE

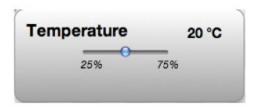
INTEGRITY CONSTRAINTS <u>DO NOT</u> PREVENT BAD DATA

ENFORCING CONSTRAINTS LEADS TO FRUSTRATION

USE DATA QUALITY MEASURES TO **PREDICT** HOW LIKELY A VALUE IS TO BE CORRECT.

ADJUST THE INTERFACE TO **ADD FRICTION** WHEN ENTERING UNLIKELY RESPONSES.

PRINCIPLE 1


DATA QUALITY SHOULD BE CONTROLLED VIA **FEEDBACK**, NOT **ENFORCEMENT**.

PRINCIPLE 2

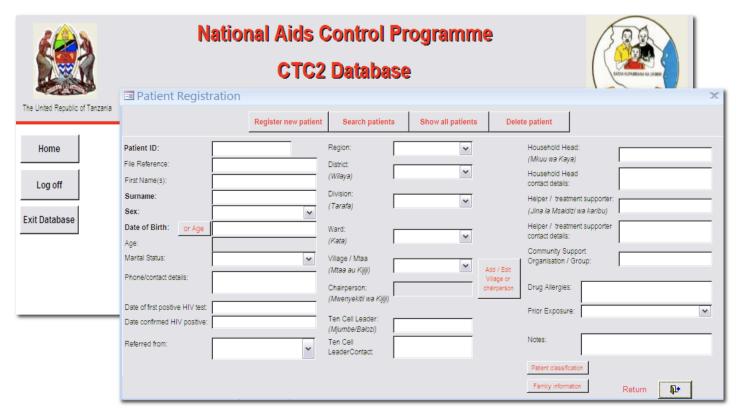
FRICTION MERITS **EXPLANATION**.

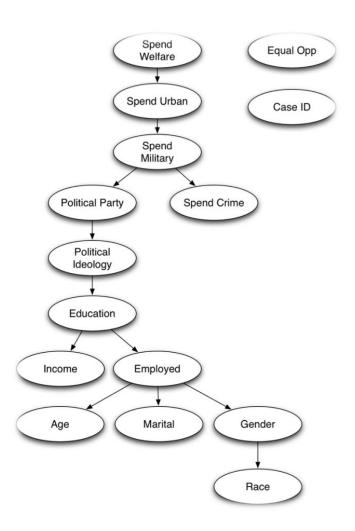
PRINCIPLE 3

ANNOTATION SHOULD BE EASIER THAN OMISSION OR SUBVERSION.

This value seems low.

Are you sure?

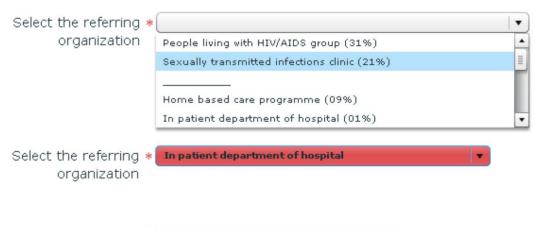

TEMPERATURE


-60 **oC**

Sensor disabled.

USHER

[Chen et al. 2010]




BUILD A MODEL to predict dependencies and relationships between questions.

DYNAMIC ORDERING

ALWAYS ASK THE MOST APPROPRIATE NEXT QUESTION

SUGGEST THE MOST LIKELY ANSWERS

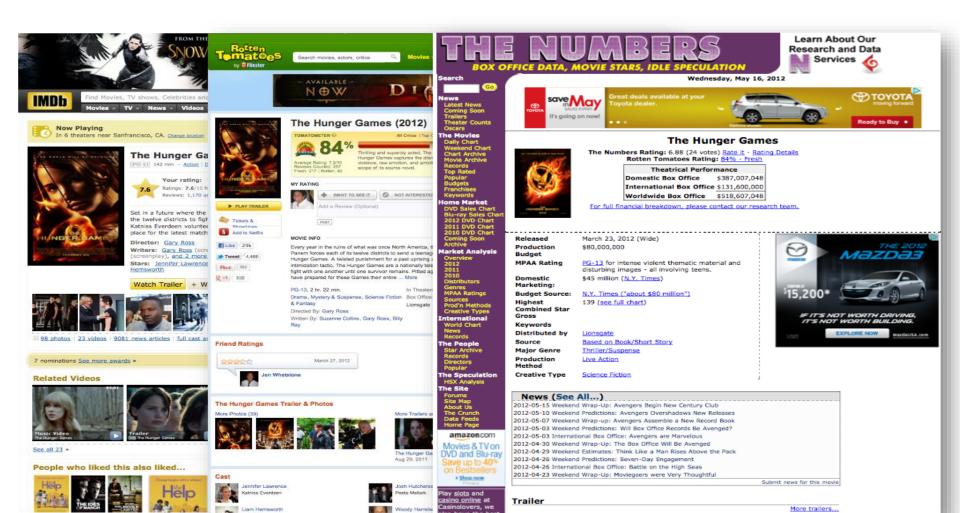
Choose the * Male (40%)
patient's gender
Female (59%)

[Chen et al. 2010]

SMART RE-ASKING AND SUGGESTIONS

DETECTING ERRORS

LOOK FOR OUTLIERS / ANOMALIES
EXAMINE DATA TYPES
SCHEMA CHECKING
VALIDATE WITH OTHER DATA
OTHER HEURISTICS


HISTORICALLY – MORE FOCUS ON AUTOMATED APPROACHES

"PROFILING" DATA

<u>UNDERSTANDING</u> WHAT ASSUMPTIONS YOU CAN MAKE ABOUT DATA

INTERACTIVELY IDENTIFYING DATA QUALITY ISSUES

AN EXAMPLE

Title	Release Date	MPAA Rating	Distributor	Rotten Tomatoes Rating	IMDB Rating
The Land Girls	Jun 12, 1998	R	Gramercy		6.1
First Love, Last Rites	Aug 7, 1998	R	Strand		6.9
l Married a Strange Person	Aug 28, 1998		Lionsgate		6.8
Slam	Oct 9, 1998	R	Trimark	62	3.4
Mississippi Mermaid	Jan 15, 1999		MGM		
Following	Apr 4, 1999	R	Zeitgeist		7.7
Foolish	Apr 9, 1999	R	Artisan		3.8
Pirates	Jul 1, 1986	R		25	5.8
Duel in the Sun	Dec 31, 2046			86	7
Tom Jones	Oct 7, 1963			81	7
Oliver!	Dec 11, 1968		Sony Pictures	84	7.5
To Kill A Mockingbird	Dec 25, 1962		Universal	97	8.4
Tora, Tora, Tora	Sep 23, 1970				
Hollywood Shuffle	Mar 1, 1987			87	6.8
Over the Hill to the Poorhouse	Sep 17, 2020				
Wilson	Aug 1, 2044				7
Darling Lili	Jan 1, 1970				6.1
The Ten Commandments	Oct 5, 1956			90	2.5
12 Angry Men	Apr 13, 1957		United Artists		8.9
Twelve Monkeys	Dec 27, 1995	R	Universal		8.1
1776	Nov 9, 1972	PG	Sony/ Columbia	57	7

Title	Release Date	MPAA Rating	Distributor	Rotten Tomatoes Rating	IMDB Rating
The Land Girls	Jun 12, 1998	R	Gramercy		6.1
First Love, Last Rites	Aug 7, 1998	R	Strand		6.9
l Married a Strange Person	Aug 28, 1998		Lionsgate		6.8
Slam	Oct 9, 1998	R	Trimark	62	3.4
Mississippi Mermaid	Jan 15, 1999		MGM		
Following	Apr 4, 1999	R	Zeitgeist		7.7
Foolish	Apr 9, 1999	R	Artisan		3.8
Pirates	Jul 1, 1986	R		25	5.8
Duel in the Sun	Dec 31, 2046			86	7
Tom Jones	Oct 7, 1963			81	7
Oliver!	Dec 11, 1968		Sony Pictures	84	7.5
To Kill A Mockingbird	Dec 25, 1962		Universal	97	8.4
Tora, Tora, Tora	Sep 23, 1970				
Hollywood Shuffle	Mar 1, 1987			87	6.8
Over the Hill to the Poorhouse	Sep 17, 2020				
Wilson	Aug 1, 2044				7
Darling Lili	Jan 1, 1970				6.1
The Ten Commandments	Oct 5, 1956			90	2.5
12 Angry Men	Apr 13, 1957		United Artists		8.9
Twelve Monkeys	Dec 27, 1995	R	Universal		8.1
1776	Nov 9, 1972	PG	Sony/ Columbia	57	7

Arnolds Park	Oct 19, 2007	PG-13	The Movie Partners
Sweet Sweetback's Baad Assss Song	Jan 1, 1971		
And Then Came Love	Jun 1, 2007	Not Rated	Fox Meadow
Around the World in 80 Days	Oct 17, 1956	PG	United Artists
Barbarella	Oct 10, 1968		Paramount Pictures
Barry Lyndon	1975		Warner Bros.
Barbarians, The	March, 1987		
Babe	Aug 4, 1995	G	Universal
Boynton Beach Club	Mar 24, 2006	R	Wingate Distribution
Baby's Day Out	Jul 1, 1994	PG	20th Century

Bad Boys	Apr 7, 1995	6.6	53929
Body Double	Oct 26, 1984	6.4	9738
The Beast from 20,000 Fathoms	Jun 13, 1953		
Beastmaster 2: Through the Portal of Time	Aug 30, 1991	3.3	1327
The Beastmaster	Aug 20, 1982	5.7	5734
Ben-Hur	Dec 30, 2025	8.2	58510
Ben-Hur	Nov 18, 1959	8.2	58510
Benji	Nov 15, 1974	5.8	1801
Before Sunrise	Jan 27, 1995	8	39705

SOME DATA QUALITY ISSUES

MISSING DATA

MISSED MEASUREMENTS, REDACTED ITEMS, INCOMPLETE FORMS, ETC.

ERRONEOUS VALUES

MISSPELLINGS, OUTLIERS, "SPURIOUS INTEGRITY", ETC.

ENTITY RESOLUTION

DIFFERENT VALUES, ABBREVS., 2+ ENTRIES FOR THE SAME THING?

TYPE CONVERSION

E.G., ZIP CODE OR PLACE NAME TO LAT-LON

DATA INTEGRATION

MISMATCHES AND INCONSISTENCIES WHEN COMBINING DATA

DETECTION METHODS

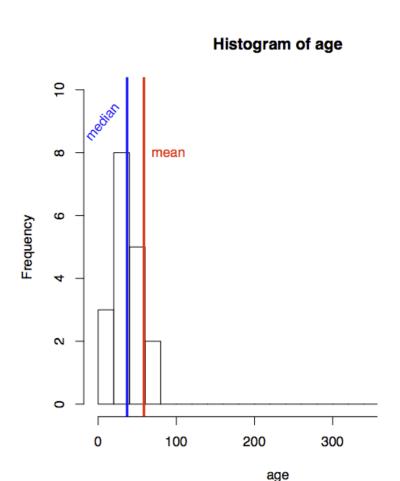
+ CAN IDENTIFY
POTENTIAL ANOMALIES

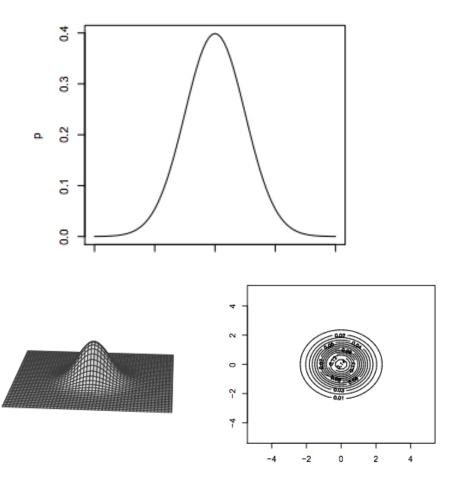
- HARD TO KNOW <u>IF</u> THEY'RE REALLY ANOMALOUS OR <u>HOW</u> TO CORRECT THEM

Туре	Issue	Detection Method(s)
Missing	Missing record	Outlier Detection Residuals then Moving Average w/ Hampel X84
		Frequency Outlier Detection Hampel X84
	Missing value	Find NULL/empty values
Inconsistent	Measurement units	Clustering Euclidean Distance
		Outlier Detection z-score, Hampel X84
	Misspelling	Clustering Levenshtein Distance
	Ordering	Clustering Atomic Strings
	Representation	Clustering Structure Extraction
	Special characters	Clustering Structure Extraction
Incorrect	Erroneous entry	Outlier Detection z-score, Hampel X84
	Extraneous data	Type Verification Function
	Misfielded	Type Verification Function
	Wrong physical data type	Type Verification Function
Extreme	Numeric outliers	Outlier Detection z-score, Hampel X84, Mahalanobis distance
	Time-series outliers	Outlier Detection Residuals vs. Moving Average then Hampel X84
Schema	Primary key violation	Frequency Outlier Detection Unique Value Ratio

MISSING AND IMPOSSIBLE VALUES

- 1. LOOK AT EMPTY/MISSING VALUES
- 2. LOOK AT IMPOSSIBLE VALUES


```
Gender = 3
Heart Rate = 0
Unlikely Dates (e.g. "01/01/0001")
```


JUST <u>SORTING</u> THE DATA CAN HELP HIGHLIGHT ISSUES LIKE THESE

OUTLIER DETECTION

- 1. EXAMINE DISTRIBUTIONS
- 2. MODEL DATA AND LOOK FOR RESIDUALS
- 3. PARTITION DATA

EXAMINE DISTRIBUTIONS

DETECTING DUPLICATES

Title

Ben-Hur

Ben Hur

BEN-HUR

Ben-Hur (1959 film)

Name

Anand Vaskar

Anand Vaskkar

A. Vaskar

Vaskar, Anand

THESE MIGHT ALL BE THE SAME

LEVENSHTEIN ("STRING-EDIT") DISTANCE

How many edits do I need to change one value into another?

Ben-Hur Ben Hur Anand Vaskar Anand Vaskkar

DISTANCE = 1

DISTANCE = 1

LEVENSHTEIN ("STRING-EDIT") DISTANCE

How many edits do I need to change one value into another?

Ben-Hur

Ben-Hur (1959 film)

Anand Vaskar

Vaskar, Anand

DISTANCE = 12

DISTANCE = 12

SOUNDEX / METAPHONE

How similar do they sound?

Ben-Hur

Ben-Hurr

Been Her

Anand Vaskar

Anand Vaskkar

Ahnund Vachkar

"FINGERPRINTING" METHODS

Strip away unimportant details.

(e.g., remove punctuation, capitals, and sort)

Anand Vaskar → anand vaskar Vaskar, Anand → anand vaskar

AND MANY MORE

STRING/KEY COMPARISONS DISTANCE METRICS FOR NUMERIC DATA

e.g., HAMPEL X84 (UNIVARIATE), MAHALANOBIS (MULTIVARIATE)

"Quantitative Data Cleaning for Large Databases"

Hellerstein (2008)

Quantitative Data Cleaning for Large Databases

Joseph M. Hellerstein*
EECS Computer Science Division
UC Berkeley
http://db.cs.berkeley.edu/jmh
February 27, 2008

1 Introduction

Data collection has become a ubiquitous function of large organizations — not only for record keeping, but to support a variety of data analysis tasks that are critical to the organizational mission. Data analysis typically strives decision-making processes and efficiency optimizations, and in an increasing number of settings is the raison d'efer of entire agencies or firms.

Despite the importance of data collection and analysis, data pushly emails a persudov and thereay pushloss in simulest every large organization. The pressure of incurrent or incunsional data can significantly distort the results of analyses, often negating the potential benefits of data can significantly distort the results of analyses, often negating the potential benefits of information-driven approaches. As a result, there has been a saviny of messechi over the last decades on various aspects of data classings computational proordures in automatically or sumi-automatically doutily—and, when possible, correct errors in large data are sumi-automatically doutily—and, when possible, correct errors in large data and

some administrating strategy "size," which pulsation, element "three is may thus some the relational large data some process of the pulsation of large distances, though we also provide references to distinct carboning strategies of static types of attributes. The discussion is togeted at computer practitioners who measure large datastess of quantizative inferences, and designes developing due entry and unified to the first out of the content of our free on quantizative data, we take a statistical view of data based on the content of the con

1.1 Sources of Error in Data

Before a data from ends up in a database, it typically passes through a number of tesps involving the human interestion and composition. Data returns on every in at every sign of the process from initial data acquisition to archivel storage. An understanding of the sources of data every contract on the owner of the sources of data every test of the sources of the

DECIDING HOW TO FIX PROBLEMS

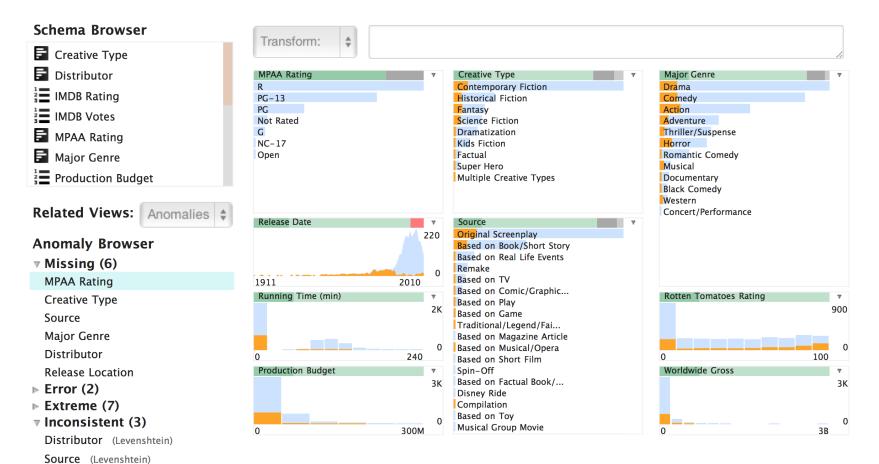
YOU CAN DO ALMOST ALL OF THIS IN **SQL** ... BUT IT'S A LOT OF WORK

DECIDING HOW TO FIX PROBLEMS

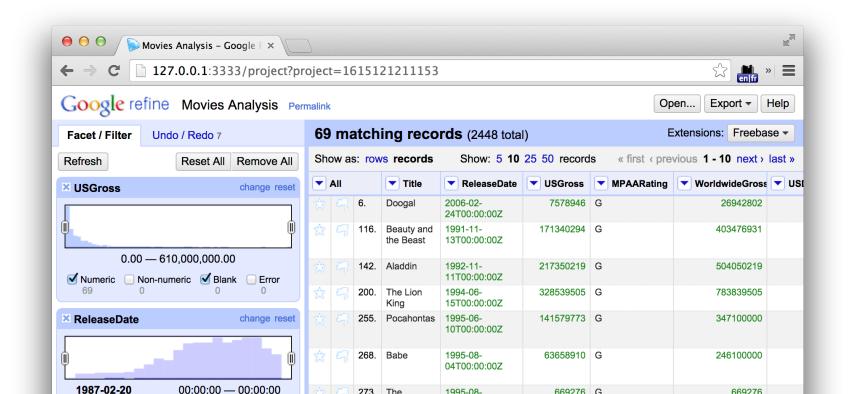
WHICH DUPLICATE TO KEEP?

OUTLIERS: KEEP, REMOVE, OR REPAIR?

BADLY-STORED DATES, ADDRESSES, OR KEYS MAY NEED TO BE <u>PARSED MANUALLY</u>


DECIDING HOW TO FIX PROBLEMS

FUZZY MATCHING SYSTEMS


MACHINE LEARNING TO DETECT/RESOLVE ERRORS

USUALLY REQUIRES HUMAN JUDGMENT (ESPECIALLY FOR NEW DATA)

INTERACTIVE PROFILING

PROFILING IN OPEN REFINE

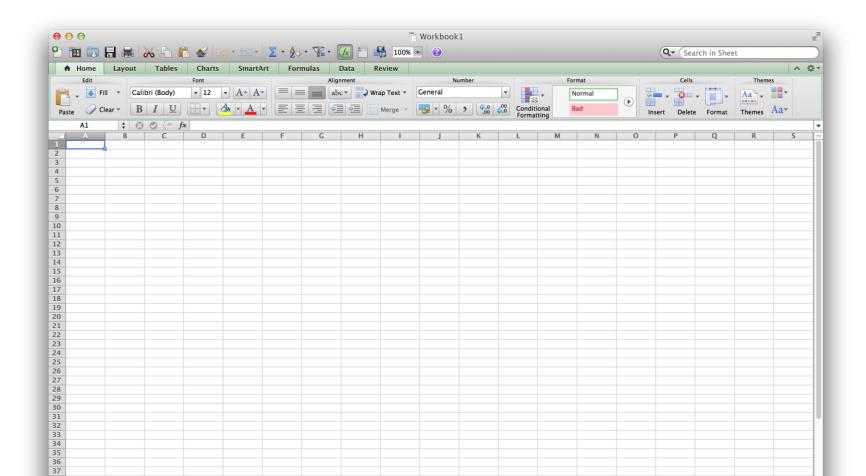
SOME APPROACHES FOR IMPROVING DATA QUALITY

TOOLS FOR MANIPULATING AND CLEANING DATA

"WRANGLING" DATA

CLEANING AND TRANSFORMING DATASETS TO MAKE IT <u>POSSIBLE</u> TO ANALYZE AND VISUALIZE THEM

COMMON OPERATIONS

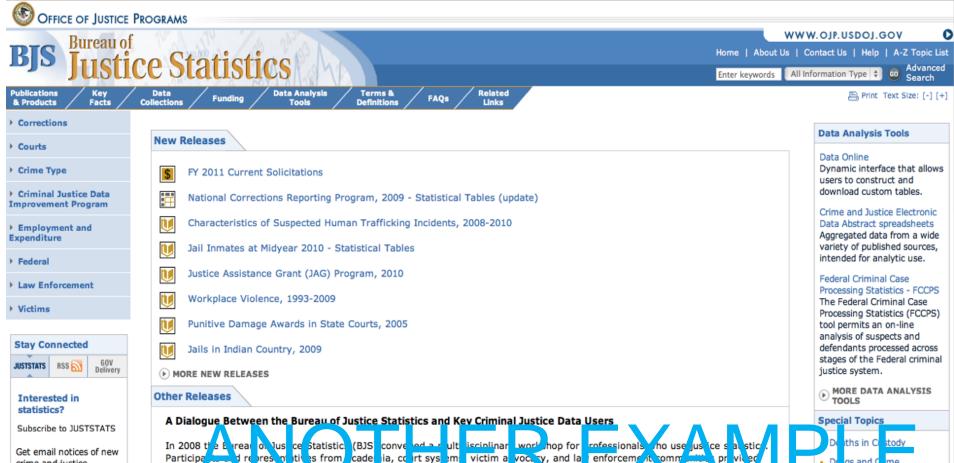

CORRECTING AND REMOVING ERRORS

CHANGING FORMATS

REMOVING FORMATTING

CONNECTING AND RESOLVING DATA

SPREADSHEETS



TRANSFORMATIONS ARE TIME-CONSUMING

"I spend more than half my time integrating, cleansing, and transforming data without doing any actual analysis. Most of the time I'm lucky if I get to do any 'analysis' at all."

"Most of the time once you transform the data, the insights can be scarily obvious."

[Kandel 2012]

feedbag, about how they see a S. strustical information and recommend I way BJS could entimize the ally and publishes. A Dialogue Between BJS and Key Criminal Justice Data Users is now available.

Announcements

BJS Visiting Fellows

crime and justice

OJJDP.

Sign up

statistical materials as

they become available from BJS, the FBI, and

Once you subscribe, you

will receive an email notification from

HICTCTATC whom

Lynn A. Addington, Ph.D., Janet L. Lauritsen, Ph.D., and Avinash Bhati, Ph.D., are Visiting Fellows at the Bureau of Justice Statistics (BJS). They will conduct research designed to enhance the analytical approach and usability of specific BJS data collections. Visit the BJS Fellows page for additional information about Professor Addington, Professor Lauritsen, Mr. Bhati, and the BJS Visiting Fellows Program.

Dr gs and C me

Homicide Trends

Intimate Partner Violence

Reentry Trends

MORE SPECIAL TOPICS

BJS Partners

Invactioation

Federal Bureau of

State	2004	2005	2006	2007	2008		
Alabama	4029.3	3900	3937	3974.9	4081.9		
Alaska	3370.9	3615	3582	3373.9	2928.3		
Arizona	5073.3	4827	4741.6	4502.6	4087.3		
Arkansas	4033.1	4068	4021.6	3945.5	3843.7		
California	3423.9	3321	3175.2	3032.6	2940.3		
Colorado	3918.5	4041	3441.8	2991.3	2856.7		
Connecticut	2684.9	2579	2575	2470.6	2490.8		
Delaware	3283.6	3118	3474.5	3427.1	3594.7		
District of Columbia	4852.8	4490	4653.9	4916.3	5104.6		
Florida	4182.5	4013	3986.2	4088.8	4140.6		
Georgia	4223.5	4145	3928.8	3893.1	3996.6		
Hawaii	4795.5	4800	4219.9	4119.3	3566.5		
Idaho	2781	2697	2386.9	2264.2	2116.5		
Illinois	3174.1	3092	3019.6	2935.8	2932.6		
Indiana	3403.6	3460	3464.3	3386.5	3339.6		
lowa	2904.8	2845	2870.3	2648.6	2440.5		
Kansas	4015.5	3806	3858.5	3693.8	3397		
Kentucky	2540.2	2531	2621.9	2524.6	2677.1		
Louisiana	4419.1	3696	4088.5	4196.1	3880.2		
Maine	2413.7	2419	2546.1	2448.3	2463.7		
Maryland	3640.7	3551	3481.2	3431.5	3516		
Massachusetts	2468.2	2358	2396	2399.2	2402		
Michigan	3066.1	3098	3226	3057.8	2945.7		
Minnesota	3041.6	3088	3088.8	3045	2858.1		
Mississippi	3481.1	3274	3213	3137.8	2941.7		
Missouri	3900.1	3929	3828.4	3828.2	3663.6		
Montana	2936.1	3146	2863.4	2863.6	2720.9		
Nebraska	3519.6	3432	3364.9	3142.8	2878.3		
Nevada	4210	4246	4099.6	3785.1	3456.4		

Year	Pro Rat	perty Crime te		
Reported crime in Alabama				
	2004	4029.3		
	2005	3900		
	2006	3937		
	2007	3974.9		
	2008	4081.9		
Reported crime in Alaska				
	2004	3370.9		
	2005	3615		
	2006	3582		
	2007	3373.9		
	2008	2928.3		
Reported crime in Arizona				
	0004	5070.0		
	2004	5073.3		
	2005	4827		
	2006	4741.6		
	2007	4502.6		
	2008	4087.3		

Year	Prop Rate	erty Crime		
Reported crime in Alabama				
	2004	4029.3		
	2005	3900		
	2006	3937		
	2007	3974.9		
	2008	4081.9		
Reported crime in Alaska				
	2004	3370.9		
	2005	3615		
	2006	3582		
	2007	3373.9		
	2008	2928.3		
Reported crime in Arizona				
	2004	5073.3		
	2005	4827		
	2006	4741.6		
	2007	4502.6		
	2008	4087.3		

Year	Property Crime Rate		
Reported crime in Alabama			
	204		
	004 4029.3		
	005 3900		
	3937		
20	007 3974.9	9	
20	008 4081.9		
Reported crime in Alaska			
20	004 3370.9		
20	005 3615	5	
20	006 3582	2	
20	007 3373.9	9	
20	008 2928.3	3	
Reported crime in Arizona			
20	004 5073.3	3	
	005 4827		
	006 4741.6		
	007 4502.6		
	008 4087.3		

Year	Property Crime Rate		
Reported crime in Alabama			
2004	4029.3		
2009	3900		
2006	3937		
2007	3974.9		
2008	4081.9		
Reported crime in Alaska			
·			
2004	3370.9		
2009			
2006			
2007			
2008			
Reported crime in Arizona			
,			
2004	5073.3		
2009			
2006			
2007			
2008			
2000	4007.0		

Year	Pro Rat	perty Crime te		
Reported crime in Alabama				
	2004	4029.3		
	2005	3900		
	2006	3937		
	2007	3974.9		
	2008	4081.9		
Reported crime in Alaska				
	2004	3370.9		
	2005	3615		
	2006	3582		
	2007	3373.9		
	2008	2928.3		
Reported crime in Arizona				
	0004	5070.0		
	2004	5073.3		
	2005	4827		
	2006	4741.6		
	2007	4502.6		
	2008	4087.3		

State	2004	2005	2006	2007	2008		
Alabama	4029.3	3900	3937	3974.9	4081.9		
Alaska	3370.9	3615	3582	3373.9	2928.3		
Arizona	5073.3	4827	4741.6	4502.6	4087.3		
Arkansas	4033.1	4068	4021.6	3945.5	3843.7		
California	3423.9	3321	3175.2	3032.6	2940.3		
Colorado	3918.5	4041	3441.8	2991.3	2856.7		
Connecticut	2684.9	2579	2575	2470.6	2490.8		
Delaware	3283.6	3118	3474.5	3427.1	3594.7		
District of Columbia	4852.8	4490	4653.9	4916.3	5104.6		
Florida	4182.5	4013	3986.2	4088.8	4140.6		
Georgia	4223.5	4145	3928.8	3893.1	3996.6		
Hawaii	4795.5	4800	4219.9	4119.3	3566.5		
Idaho	2781	2697	2386.9	2264.2	2116.5		
Illinois	3174.1	3092	3019.6	2935.8	2932.6		
Indiana	3403.6	3460	3464.3	3386.5	3339.6		
lowa	2904.8	2845	2870.3	2648.6	2440.5		
Kansas	4015.5	3806	3858.5	3693.8	3397		
Kentucky	2540.2	2531	2621.9	2524.6	2677.1		
Louisiana	4419.1	3696	4088.5	4196.1	3880.2		
Maine	2413.7	2419	2546.1	2448.3	2463.7		
Maryland	3640.7	3551	3481.2	3431.5	3516		
Massachusetts	2468.2	2358	2396	2399.2	2402		
Michigan	3066.1	3098	3226	3057.8	2945.7		
Minnesota	3041.6	3088	3088.8	3045	2858.1		
Mississippi	3481.1	3274	3213	3137.8	2941.7		
Missouri	3900.1	3929	3828.4	3828.2	3663.6		
Montana	2936.1	3146	2863.4	2863.6	2720.9		
Nebraska	3519.6	3432	3364.9	3142.8	2878.3		
Nevada	4210	4246	4099.6	3785.1	3456.4		

Year	Property Crime Rate		
Reported crime in Alabama			
2004	4029.3		
2005	3900		
2006	3937		
2007	3974.9		
2008	4081.9		
Reported crime in Alaska			
2004	3370.9		
2005	3615		
2006	3582		
2007	3373.9		
2008	2928.3		
Reported crime in Arizona			
2004	5073.3		
2005	4827		
2006	4741.6		
2007	4502.6		
2008	4087.3		

State	Year	Property Crime Rate
	Reported crime in Alabama	
	20	04 4029.3
	20	05 3900
	20	06 3937
	20	07 3974.9
	20	08 4081.9
	Reported crime in Alaska	
	20	04 3370.9
	20	05 3615
	20	06 3582
	20	07 3373.9
	20	08 2928.3
	Reported crime in Arizona	
	•	
	20	04 5073.3
	20	05 4827
	20	06 4741 6
	20	4502 6
	20	08 4087.3

State	Year	Property Crime Rate
	Reported crime in Alabama	
	2004	4029.3
	2005	3900
	2006	3937
	2007	3974.9
	2008	4081.9
	Reported crime in Alaska	
	2004	3370.9
	2005	3615
	2006	3582
	2007	3373.9
	2008	2928.3
	Reported crime in Arizona	
	2004	5073.3
	2005	
	2006	
	2007	45,72.6
	2008	

State	Year		Property Crime Rate
	Reported crime in Alabama		
		2004	4029.3
		2005	3900
		2006	3937
		2007	3974.9
		2008	4081.9
	Reported crime in Alaska		
		2004	3370.9
		2005	3615
		2006	3582
		2007	3373.9
		2008	2928.3
	Reported crime in Arizona		
		2004	5073.3
		2005	4827
		2006	4741.6
		2007	4502.6
	EVEDAGE	รูปกล	4087.3
	Reported crime in Arkansas		

State	Year	Property Crime Rate
Alabama	Reported crime in Alabama	
	200	4 4029.3
	200	5 3900
	200	6 3937
	200	7 3974.9
	200	8 4081.9
	Reported crime in Alaska	
	200	4 3370.9
	200	5 3615
	200	6 3582
	200	7 3373.9
	200	8 2928.3
	Reported crime in Arizona	
	200	4 5073.3
	200	5 4827
	200	6 4741.6
	200	7 4502.6
	200	8 4087 3
	Reported crime in Arkansas	

State	Year	Property Crime Rate
Alabama	Reported crime in Alabama	
Alabama		2004 4029.3
Alabama		2005 3900
Alabama		2006 3937
Alabama		2007 3974.9
Alabama		2008 4081.9
	Reported crime in Alaska	
		2004 3370.9
		2005 3615
		2006 3582
		2007 3373.9
		2008 2928.3
	Reported crime in Arizona	
		2004 5073.3
		2005 4827
		2006 4741.6
		2007 4502.6
	:	2008 4087.3
	Reported crime in Arkansas	

State	Year	Property Crime Rate
Alabama	Reported crime in Alabama	
Alabama	2004	4029.3
Alabama	2005	3900
Alabama	2006	3937
Alabama	2007	3974.9
Alabama	2008	4081.9
	Reported crime in Alaska	
	2004	
	2005	3615
	2006	3582
	2007	3373.9
	2008	2928.3
	Reported crime in Arizona	
	2004	5073.3
	2005	4827
	2006	4741.6
	2007	4502.6
	2008	4087,3
	Reported crime in Arkansas	

State	Year	Property Crime Rate
Alabama	2004	4029.3
Alabama	2005	3900
Alabama	2006	3937
Alabama	2007	3974.9
Alabama	2008	4004.0
	Reported crime in Alaska	
	2004	
	2005	
	200 s 200 r 200 8	X 50
	Reported crime in Arizona	
	neported crime in Anzona	
	2004	
	2005	4827
	2006	4741.6
	2007	4502.6
	2008	4087.3
	Reported crime in Arkansas	

State	Year	Property Crime Rate	
Alabama	2004	4029.3	
Alabama	2005	3900	
Alabama	2006	3937	
Alabama	2007	3974.9	
Alabama	2008	4081.9	
Alaska	2004	3370.9	
Alaska	2005	3615	
Alaska	2006	3582	
Alaska	2007	3373.9	
Alaska	2008	2928.3	
Arizona	2004	5073.3	
Arizona	2005	4827	
Arizona	2006	4741.6	
Arizona	2007	4502.6	
Arizona	2008	4087.3	
Arkansas	2004	4033.1	
Arkansas	2005	4068	
Arkansas	2006	4021.6	
Arkansas	2007	3945.5	
Arkansas	2008	3843.7	
California		T'\	
California	RESHAPE ('PIVO	T) THE IA	BL
California	2006	3175.2	

State	2004	2005	2006	2007	2008			
Alabama	4029.3	3900	3937	3974.9	4081.9			
Alaska	3370.9	3615	3582	3373.9	2928.3			
Arizona	5073.3	4827	4741.6	4502.6	4087.3			
Arkansas	4033.1	4068	4021.6	3945.5	3843.7			
California	3423.9	3321	3175.2	3032.6	2940.3			
Colorado	3918.5	4041	3441.8	2991.3	2856.7			
Connecticut	2684.9	2579	2575	2470.6	2490.8			
Delaware	3283.6	3118	3474.5	3427.1	3594.7			
District of Columbia	4852.8	4490	4653.9	4916.3	5104.6			
Florida	4182.5	4013	3986.2	4088.8	4140.6			
Georgia	4223.5	4145	3928.8	3893.1	3996.6			
Hawaii	4795.5	4800	4219.9	4119.3	3566.5			7
Idaho	2781	2697	2386.9	2264.2	2116.5			
Illinois	3174.1	3092	3019.6	2935.8	2932.6			
Indiana	3403.6	3460	3464.3	3386.5	3339.6			
lowa	2904.8	2845	2870.3	2648.6	2440.5			
Kansas	4015.5	3806	3858.5	3693.8	3397			
Kentucky	2540.2	2531	2621.9	2524.6	2677.1			
Louisiana	4419.1	3696	4088.5	4196.1	3880.2			
Maine	2413.7	2419	2546.1	2448.3	2463.7			
Maryland	3640.7	3551	3481.2	3431.5	3516			
Massachusetts	2468.2	2358	2396	2399.2	2402			
Michigan	3066.1	3098	3226	3057.8	2945.7			
Minnesota	3041.6	3088	3088.8	3045	2858.1			
Mississippi	3481.1	3274	3213	3137.8	2941.7			
Missouri	3900.1	39						
Montana	2936.1	31	RE	SHAF) H (, L)	IVO L'	· IABI	
Nebraska	3519.6	34						75
Nevada	4210	4246	4099.6	3785.1	3456.4			

State	2004	2005	2006	2007	2008			
Alabama	4029.3	3900	3937	3974.9	4081.9			
Alaska	3370.9	3615	3582	3373.9	2928.3			
Arizona	5073.3	4827	4741.6	4502.6	4087.3			
Arkansas	4033.1	4068	4021.6	3945.5	3843.7			
California	3423.9	3321	3175.2	3032.6	2940_3			
Colorado	391 1.5	4041	3, 1.8	2 19 3	285 .		VAV	
Connecticut	268 .9	2579	5.	7 .70	24		VV	
Delaware	3∠83.6	3118	3474.5	3427.1	3594.7			
District of Columbia	4852.8	4490	4653.9	4916.3	5104.6			
Florida	4182.5	40 3	3986.2	408 .8	41 0.6			
Georgia	4223.5	41 5	3928	389 .1	39 6.6			
Hawaii	4795.5	4800	4219.9	4119.3	3566.5			
Idaho	2781	2697	2386.9	2264.2	2116.5			
Illinois	3174.1	3092	30 .6	2935 8	98			
Indiana	3403.6	3460	34 4 1	386 5	333.			
lowa	2904.8	2845	8 0.3	2 48 8	24 15			
Kansas	4015.5	3806	3858.5	3693.8	3397			
Kentucky	2540.2	2531	2621.9	2524.6	2677.1			
Louisiana	4419.1	3696	4088.5	4196.1	3880.2			
Maine	2413.7	2419	2546.1	2448.3	2463.7			
Maryland	3640.7	3551	3481.2	3431.5	3516			
Massachusetts	2468.2	2358	2396	2399.2	2402			
Michigan	3066.1	3098	3226	3057.8	2945.7			
Minnesota	3041.6	3088	3088.8	3045	2858.1			
Mississippi	3481.1	3274	3213	3137.8	2941.7			
Missouri	3900.1	3929	3828.4	3828.2	3663.6			
Montana	2936.1	3146	2863.4	2863.6	2720.9			
Nebraska	3519.6	3432	3364.9	3142.8	2878.3			
Nevada	4210	4246	4099.6	3785.1	3456.4			

State	2004	2005	2006	2007	2008	
Alabama	4029.3	3900	3937	3974.9	4081.9	
Alaska	3370.9	3615	3582	3373.9	2928.3	
Arizona	5073.3	4827	4741.6	4502.6	4087.3	
Arkansas	4033.1	4068	408187	₹ - 89 Δ ₹.5),	SHEET	S
California	3423.9	3321	3175.2	3032.6	2940.3	
Colorado	3918.5	4041	3441.8	2991.3	2856.7	
Connecticut	2684.9	2579				
Delaware	3283.6	3118	+ =/	\MILI <i>A</i>		
District of Columbia	4852.8	4490				
Florida	4182.5	4013	$+$ \vee	SUAL		
Georgia	4223.5	4145	cozo.c	0000.1	0000.0	
Hawaii	4795.5	4800				
Idaho	2781	2697	- I E L	DIOUS		
Illinois	3174.1	3092	TLM			
Indiana	3403.6	3460	- I IIV	IE-CON	SUMING	
lowa	2904.8	2845	DEI	PETITIV	/ _	
Kansas	4015.5	3806	- KEI			
Kentucky	2540.2	2531	2621.9	2524.6	2677.1	
Louisiana	4419.1	3696	4088.5	4196.1	3880.2	
Maine	2413.7	2419	2546.1	2448.3	2463.7	
Maryland	3640.7	3551	3481.2	3431.5	3516	
Maccachucatte	2/68 2	2258	2206	2200.2	2402	

```
from wrangler import dw
import sys
                               SCRIPTS
w = dw.DataWrangler()
# Split data repeatedly on newline into rows
w.add(dw.Split(column="data", result="row", on="\n", max=0)
# Split data repeatedly on ',' + REUSABLE
w.add(dw.Split(column="data",
                            + SCALABLE
# Delete empty rows
w.add(dw.Filter(row=dw.Row(cond
                            - HARD
                            - TEDIOUS
# Extract from split after 'in
w.add(dw.Extract(column="split'
                            - TIME-CONSUMING
# Fill extract with values from above
w.add(dw.Fill(column="extract", direction="down"))
# Delete rows where split1 is null
```

INTERACTIVE DATA CLEANING

Trifacta Wrangler

https://www.trifacta.com/

Wrangler (Stanford HCI Group)

http://vis.stanford.edu/wrangler/

OpenRefine (formerly Google Refine)

http://openrefine.org/

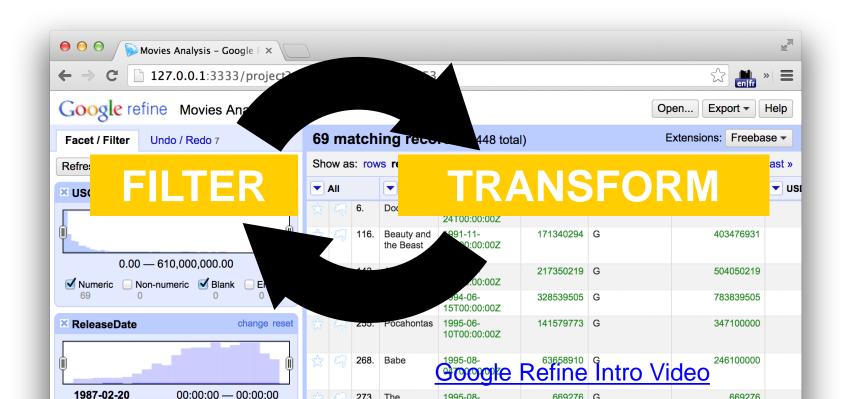
INTERACTIVE DATA CLEANING BY EXAMPLE

```
Reported crime in Alabama,
2004,4029.3
2005.3900
2006.3937
2007.3974.9
2008.4081.9
Reported crime in Alaska,
2004.3370.9
2005.3615
2006,3582
2007,3373.9
2008,2928.3
Reported crime in Arizona,
2004,5073.3
2005,4827
2006,4741.6
2007,4502.6
2008,4087.3
Reported crime in Arkansas,
2004,4033.1
2005.4068
2006,4021.6
2007.3945.5
2008,3843.7
Reported crime in California,
2004,3423.9
2005.3321
2006 3175 2
```

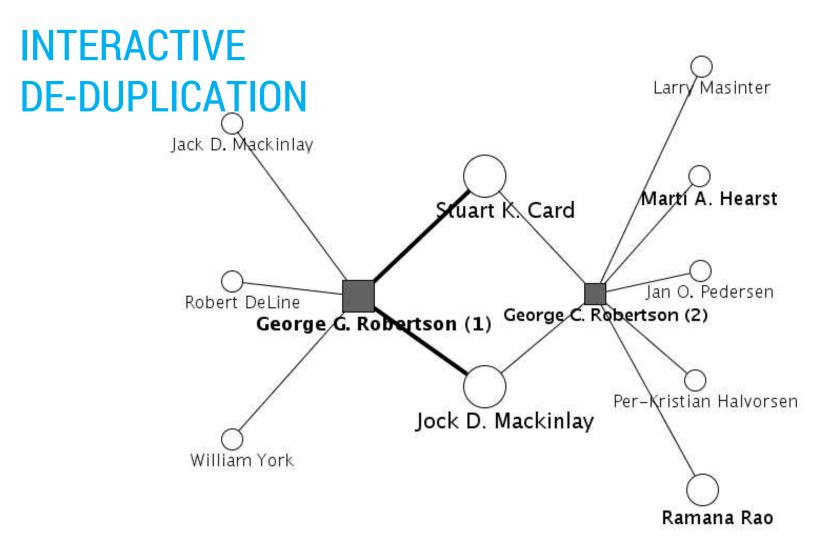
(http://vimeo.com/19185801)

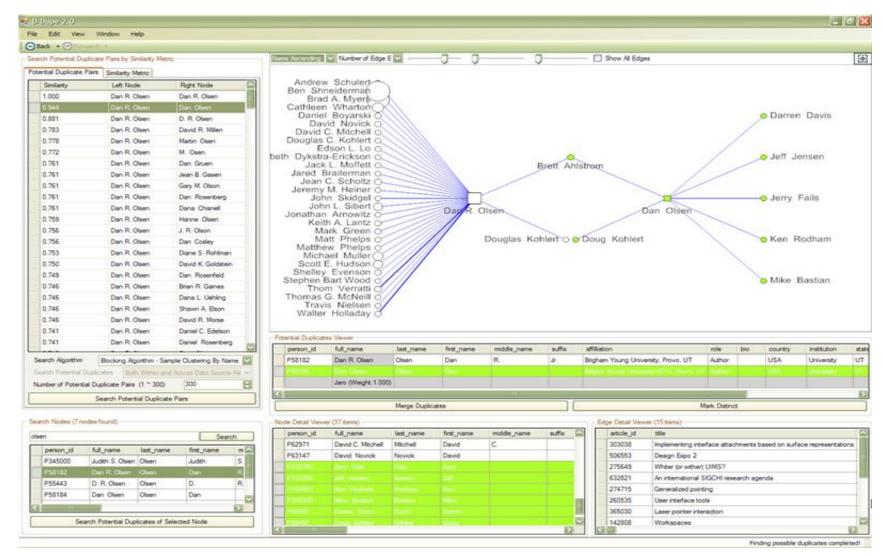
#	split 👙	extract	♦ # split1	- (
1 2004		Alabama	4029.3	
2 2005	ļ	Alabama	3900	
3 2006	ļ	Alabama	3937	
4 2007	ļ	Alabama	3974.9	
5 2008	ļ	Alabama	4081.9	
6 2004	ļ	Alaska	3370.9	
7 2005	ļ	Alaska	3615	
8 2006	ļ	Alaska	3582	
9 2007	ļ	Alaska	3373.9	
10 2008	ļ	Alaska	2928.3	
11 2004	ļ	Arizona	5073.3	
12 2005	ļ	Arizona	4827	
13 2006	ļ	Arizona	4741.6	
14 2007	ļ	Arizona	4502.6	
15 2008	ļ	Arizona	4087.3	
16 2004	ļ	Arkansas	4033.1	
17 2005	ļ	Arkansas	4068	
18 2006	ļ	Arkansas	4021.6	
19 2007	ļ	Arkansas	3945.5	
20 2008	ļ	Arkansas	3843.7	
21 2004		California	3423.9	
22 2005		California	3321	
23 2006		California	3175.2	
24 2007		California	3032.6	
25 2008		California	2940.3	

WRANGLER [KANDEL ET AL. 2011]


```
import sys
if(len(sys.argv) < 3):
     sys.exit('Error: Please include an input and output file. Example python script.py
input.csv output.csv')
w = dw.DataWrangler()
# Split data repeatedly on newline into rows
w.add(dw.Split(column=["data"],
        table=0,
        status="active",
        drop=True,
        result="row",
        update=False,
        insert_position="right",
        row=None.
        on="n",
        before=None,
        after=None,
        ignore_between=None,
        which=1,
        max=0,
         positions=None,
                                                       WRANGLER [KANDEL ET AL. 2011]
        quote character=None))
```

from wrangler import dw


RESEARCH -> PRODUCTS


DATA CLEANING IN GOOGLE REFINE

THERE ARE LOTS OF OTHER SPECIALIZED TOOLS

D-DUPE [BILGIC ET AL. 2008]

D-DUPE [BILGIC ET AL. 2008]

REFERENCES

"Quantitative Data Cleaning for Large Databases"

Hellerstein (2008)

Quantitative Data Cleaning for Large Databases

Joseph M. Hellerstein* EECS Computer Science Division UC Berkeley http://db.cs.berkeley.edu/jmh

February 27, 2008

1 Introduction

Data collection has become a ubiquitous function of large organizations – not only for record keeping, but to support a variety of data analysis tasks that are critical to the organizational mission. Data analysis typically drives decision-making processes and efficiency optimizations, and in an increasing number of settings is the raison deter of entire agencies or firms.

Despite the importance of data collection and analysis, data quality remains a pervasive and thorny problem in almost every large organization. The presence of incorrect or inconsistent data can significantly distort the results of analyses, often negating the potential benefits of information-driven approaches. As a result, there has been a variety of research over the last decades on various aspects of data cleaning. computational procedures to automatically or semi-automatically identify – and, when possible, correct – errors in large data sets.

In this report, we survey data cleaning methods that focus on errors in quantitative attributes of large databases, though we also provide references to data cleaning methods for other types of attributes. The discussion is targeted at computer practitioners who manage large databases of quantitative information, and designers developing data entry and auditing tools for end users. Because of our focus on quantitative data, we take a statistical view of data quality, with an emphasis on intuitive outlier detection and exploratory data analysis methods based in robust statistics [Nouseeuw and Leroy, 1987, Hampel et al., 1986, Huber, 1981]. In addition, we stress algorithms and implementations that can be easily and efficiently implemented in very large databases, and which are easy to understand and visualize graphically. The discussion mixes statistical intuitions and methods, algorithmic building blocks, efficient relational database implementation strategies, and user interface considerations. Throughout the discussion, references are provided for deeper reading on all of these issues.

1.1 Sources of Error in Data

Before a data item ends up in a database, it typically passes through a number of steps involving both human interaction and computation. Data errors can creep in at every step of the process from initial data acquisition to archival storage. An understanding of the sources of data errors can be useful both in designing data collection and curation techniques that mitigate

1

^{*}This survey was written under contract to the United Nations Economic Commission for Europe (UNECE), which holds the copyright on this version.

TIDY DATA PRINCIPLES

Tidy Data

Hadley Wickham RStudio

Abstract

A huge amount of effort is spent cleaning data to get it ready for analysis, but there has been little research on how to make data cleaning as easy and effective as possible. This paper tackles a small, but important, component of data cleaning: data tidying. Tidy datasets are easy to manipulate, model and visualise, and have a specific structure: each variable is a column, each observation is a row, and each type of observational unit is a table. This framework makes it easy to tidy messy datasets because only a small set of tools are needed to deal with a wide range of un-tidy datasets. This structure also makes it easier to develop tidy tools for data analysis, tools that both input and output tidy datasets. The advantages of a consistent data structure and matching tools are demonstrated with a case study free from mundane data manipulation chores.

Keywords: data cleaning, data tidying, relational databases, R.

TIDY DATA

= data structured to facilitate analysis

labelled columns

labelled rows

	${\it treatmenta}$	${\it treatmentb}$
John Smith	_	2
Jane Doe	16	11
Mary Johnson	3	1

= data structure

TIDY DATA

Data semantics

variables

= column names

John Smith a —
Jane Doe a 16
Mary Johnson a 3
John Smith b 2
Jane Doe b 11
Mary Johnson b 1

observations

= rows

values

TIDY DATA

- Variables are columns
- Observations are rows
- Each observational unit in one table

In addition: put fixed variables first and then measured variables last

If you order, do so by the first variable

MESSY DATA - EXAMPLES

Column headers = values, not variables

religion	<\$10k	\$10-20k	\$20-30k	\$30-40k	\$40-50k	\$50-75k
Agnostic	27	34	60	81	76	137
Atheist	12	27	37	52	35	70
Buddhist	27	21	30	34	33	58
Catholic	418	617	732	670	638	1116
Don't know/refused	15	14	15	11	10	35
Evangelical Prot	575	869	1064	982	881	1486
Hindu	1	9	7	9	11	34
Historically Black Prot	228	244	236	238	197	223
Jehovah's Witness	20	27	24	24	21	30
Jewish	19	19	25	25	30	95

MESSY DATA - EXAMPLES

Better (most of the time)

Process to produce this = melting

religion	income	freq
Agnostic	<\$10k	27
Agnostic	\$10-20k	34
Agnostic	\$20-30k	60
Agnostic	\$30-40k	81
Agnostic	\$40-50k	76
Agnostic	\$50-75k	137
Agnostic	\$75-100k	122
Agnostic	\$100-150k	109
Agnostic	> 150 k	84
Agnostic	Don't know/refused	96

YOU!

This table is good for data entry but not analysis. How do we tidy it up?

year	artist	track	time	date.entered	wk1	wk2	wk3
2000	2 Pac	Baby Don't Cry	4:22	2000-02-26	87	82	72
2000	2Ge+her	The Hardest Part Of	3:15	2000-09-02	91	87	92
2000	3 Doors Down	Kryptonite	3:53	2000-04-08	81	70	68
2000	98^0	Give Me Just One Nig	3:24	2000-08-19	51	39	34
2000	A*Teens	Dancing Queen	3:44	2000-07-08	97	97	96
2000	Aaliyah	I Don't Wanna	4:15	2000-01-29	84	62	51
2000	Aaliyah	Try Again	4:03	2000 - 03 - 18	59	53	38
2000	Adams, Yolanda	Open My Heart	5:30	2000-08-26	76	76	74

year	artist	time	track	date	week	rank
2000	2 Pac	4:22	Baby Don't Cry	2000-02-26	1	87
2000	2 Pac	4:22	Baby Don't Cry	2000-03-04	2	82
2000	2 Pac	4:22	Baby Don't Cry	2000-03-11	3	72
2000	2 Pac	4:22	Baby Don't Cry	2000-03-18	4	77
2000	2 Pac	4:22	Baby Don't Cry	2000 - 03 - 25	5	87
2000	2 Pac	4:22	Baby Don't Cry	2000-04-01	6	94
2000	2 Pac	4:22	Baby Don't Cry	2000-04-08	7	99
2000	2Ge+her	3:15	The Hardest Part Of \dots	2000-09-02	1	91
2000	2Ge+her	3:15	The Hardest Part Of \dots	2000-09-09	2	87
2000	2Ge+her	3:15	The Hardest Part Of \dots	2000-09-16	3	92
2000	3 Doors Down	3:53	Kryptonite	2000-04-08	1	81
2000	3 Doors Down	3:53	Kryptonite	2000-04-15	2	70
2000	3 Doors Down	3:53	Kryptonite	2000-04-22	3	68
2000	3 Doors Down	3:53	Kryptonite	2000-04-29	4	67
2000	3 Doors Down	3:53	Kryptonite	2000-05-06	5	66

MESSY DATA - EXAMPLES

Multiple variables in one column

country	year	m014	m1524	m2534	m3544	m4554	m5564	m65	mu	f014
AD	2000	0	0	1	0	0	0	0		
AE	2000	2	4	4	6	5	12	10		3
${ m AF}$	2000	52	228	183	149	129	94	80		93
\overline{AG}	2000	0	0	0	0	0	0	1		1
AL	2000	2	19	21	14	24	19	16		3
AM	2000	2	152	130	131	63	26	21		1
AN	2000	0	0	1	2	0	0	0	—	0
AO	2000	186	999	1003	912	482	312	194	—	247
AR	2000	97	278	594	402	419	368	330		121
AS	2000	_				1	1			

FIRST WE MELT

How do we do this...?

country	year	m014	m1524	m2534	m3544	m4554	m5564	m65	mu	f014
AD	2000	0	0	1	0	0	0	0		_
AE	2000	2	4	4	6	5	12	10	_	3
AF	2000	52	228	183	149	129	94	80		93
\overline{AG}	2000	0	0	0	0	0	0	1		1
AL	2000	2	19	21	14	24	19	16		3
AM	2000	2	152	130	131	63	26	21		1
AN	2000	0	0	1	2	0	0	0	—	0
AO	2000	186	999	1003	912	482	312	194	—	247
AR	2000	97	278	594	402	419	368	330	—	121
AS	2000					1	1			

country	year	column	cases
AD	2000	m014	0
AD	2000	m1524	0
AD	2000	m2534	1
AD	2000	m3544	0
AD	2000	m4554	0
AD	2000	m5564	0
AD	2000	m65	0
AE	2000	m014	2
AE	2000	m1524	4
AE	2000	m2534	4
AE	2000	m3544	6
AE	2000	m4554	5
AE	2000	m5564	12
AE	2000	m65	10
$\Delta \mathbf{E}$	2000	f014	3

NEXT: SPLIT COLUMNS

country	voor	COV	200	Caror
country	year	sex	age	cases
AD	2000	\mathbf{m}	0-14	0
AD	2000	\mathbf{m}	15-24	0
AD	2000	\mathbf{m}	25 - 34	1
AD	2000	\mathbf{m}	35 - 44	0
AD	2000	\mathbf{m}	45 - 54	0
AD	2000	\mathbf{m}	55 - 64	0
AD	2000	\mathbf{m}	65 +	0
AE	2000	\mathbf{m}	0 - 14	2
AE	2000	\mathbf{m}	15-24	4
AE	2000	\mathbf{m}	25 - 34	4
AE	2000	\mathbf{m}	35 - 44	6
AE	2000	\mathbf{m}	45-54	5
AE	2000	\mathbf{m}	55-64	12
AE	2000	\mathbf{m}	65 +	10
AE	2000	f	0-14	3

MESSY DATA - EXAMPLES

Multi observational units in the same table

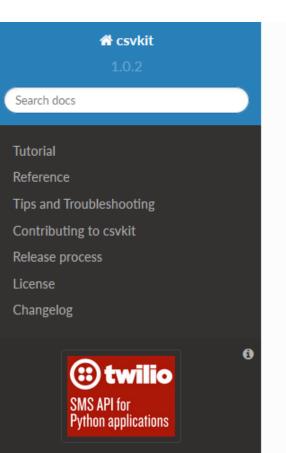
year	artist	track	time	date.entered	wk1	wk2	wk3
2000	2 Pac	Baby Don't Cry	4:22	2000-02-26	87	82	72
2000	2Ge+her	The Hardest Part Of	3:15	2000-09-02	91	87	92
2000	3 Doors Down	Kryptonite	3:53	2000-04-08	81	70	68
2000	98^0	Give Me Just One Nig	3:24	2000-08-19	51	39	34
2000	A*Teens	Dancing Queen	3:44	2000-07-08	97	97	96
2000	Aaliyah	I Don't Wanna	4:15	2000-01-29	84	62	51
2000	Aaliyah	Try Again	4:03	2000-03-18	59	53	38
2000	Adams, Yolanda	Open My Heart	5:30	2000-08-26	76	76	74

TIDYER & MORE SPACE EFFICIENT

id	artist	track	time	ic	l date	rank
1	2 Pac	Baby Don't Cry	4:22	1	2000-02-26	87
2	2Ge+her	The Hardest Part Of \dots	3:15	1	2000-03-04	82
3	3 Doors Down	Kryptonite	3:53	1	2000-03-11	72
4	3 Doors Down	Loser	4:24	1	2000-03-18	77
5	504 Boyz	Wobble Wobble	3:35	1	2000-03-25	87
6 7	BUT not all t	ools work well ad	cross	mι	ıltiple tab	es
8	Aaliyah	I Don't Wanna	4:15	2	2 2000-09-02	91
9	Aaliyah	Try Again	4:03	2	2 2000-09-09	87
10	Adams, Yolanda	Open My Heart	5:30	2	2 2000-09-16	92
11	Adkins, Trace	More	3:05	3	3 2000-04-08	81
12	Aguilera, Christina	Come On Over Baby	3:38	3	3 2000-04-15	70
13	Aguilera, Christina	I Turn To You	4:00	3	3 2000-04-22	68
14	Aguilera, Christina	What A Girl Wants	3:18	3	3 2000-04-29	67
15	Alice Deejay	Better Off Alone	6:50	- 3	3 2000-05-06	66

MORE EXAMPLES HERE

Tidy Data


Hadley Wickham RStudio

Abstract

A huge amount of effort is spent cleaning data to get it ready for analysis, but there has been little research on how to make data cleaning as easy and effective as possible. This paper tackles a small, but important, component of data cleaning: data tidying. Tidy datasets are easy to manipulate, model and visualise, and have a specific structure: each variable is a column, each observation is a row, and each type of observational unit is a table. This framework makes it easy to tidy messy datasets because only a small set of tools are needed to deal with a wide range of un-tidy datasets. This structure also makes it easier to develop tidy tools for data analysis, tools that both input and output tidy datasets. The advantages of a consistent data structure and matching tools are demonstrated with a case study free from mundane data manipulation chores.

Keywords: data cleaning, data tidying, relational databases, R.

CSVKIT

applications with just a few lines of Python

Docs » csvkit 1.0.2

C Edit on GitHub

csvkit 1.0.2

About

```
build passing dependencies up-to-date coverage 88% downloads no longer available pypi v1.0.2 license MIT
```

python 2.7, 3.3, 3.4, 3.5, 3.6

csvkit is a suite of command-line tools for converting to and working with CSV, the king of tabular file formats.

It is inspired by pdftk, gdal and the original csvcut tool by Joe Germuska and Aaron Bycoffe.

If you need to do more complex data analysis than csvkit can handle, use agate.

Important links: