REPRODUCIBLE RESEARCH R MARKDOWN + KNITR

PETRA ISENBERG

VISUAL ANALYTICS

MARKDOWN

"Markdown is a text-to-HTML conversion tool for web writers. Markdown allows you to write using an easy-to-read, easy-to-write plain text format, then convert it to structurally valid XHTML (or HTML)."

John Gruber, creator of Markdown

EXAMPLE

This text will appear italicized!

This text will appear italicized!

EXAMPLE

This text will appear bold!

This text will appear bold!

EXAMPLE

```
## This is a secondary heading
### This is a tertiary heading
```

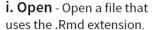
This is a secondary heading

This is a tertiary heading

RESOURCES

 http://daringfireball.net/projects/mar kdown

RMARKDOWN


- R markdown files can be used to generate reproducible reports
- Text and R code are integrated
- Very easy to create in Rstudio

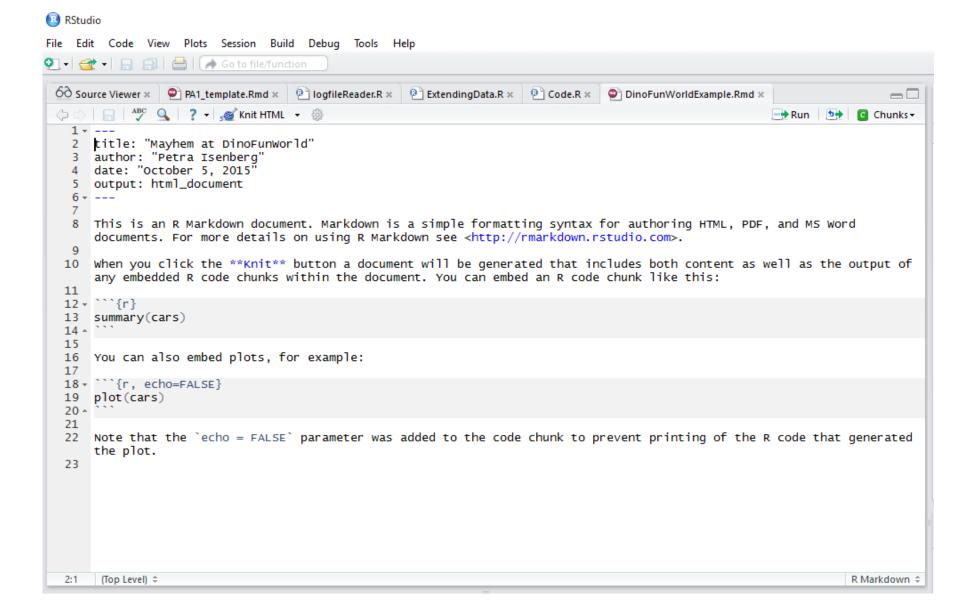
→ no need to generate Readme files

RMARKDOWN

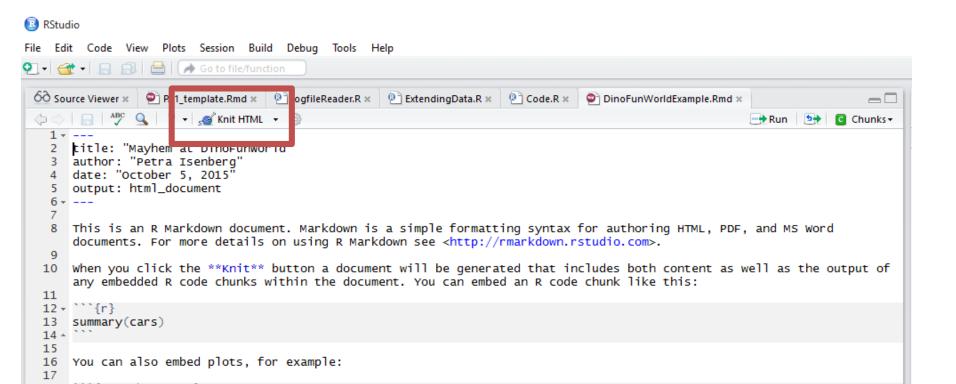
- R markdown is the integration of R code with markdown
- Allows one to create documents containing "live" R code
- R code is evaluated as part of the processing of the markdown
- Results from R code are inserted into markdown document
- A core tool in literate statistical programming

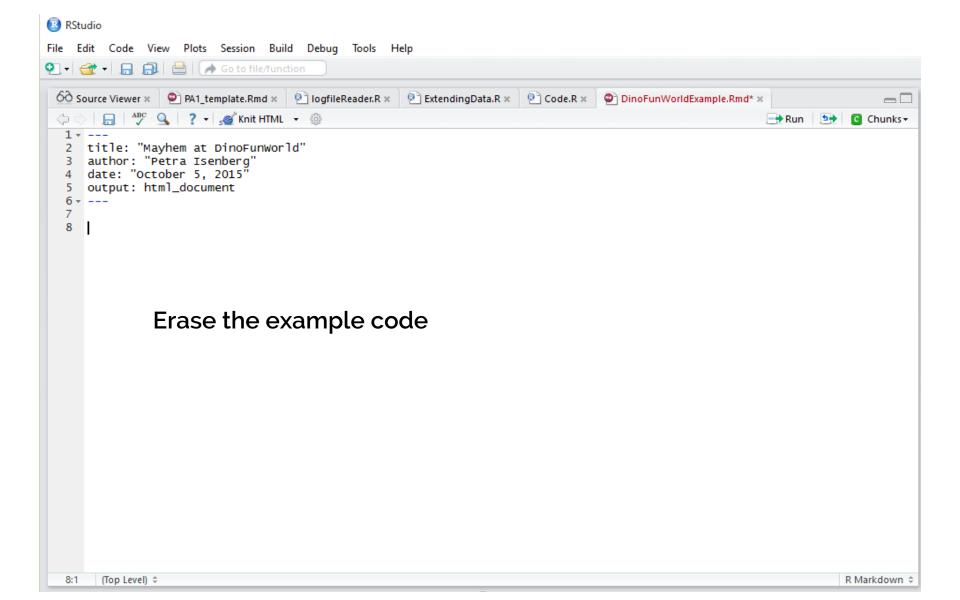
WORKFLOW

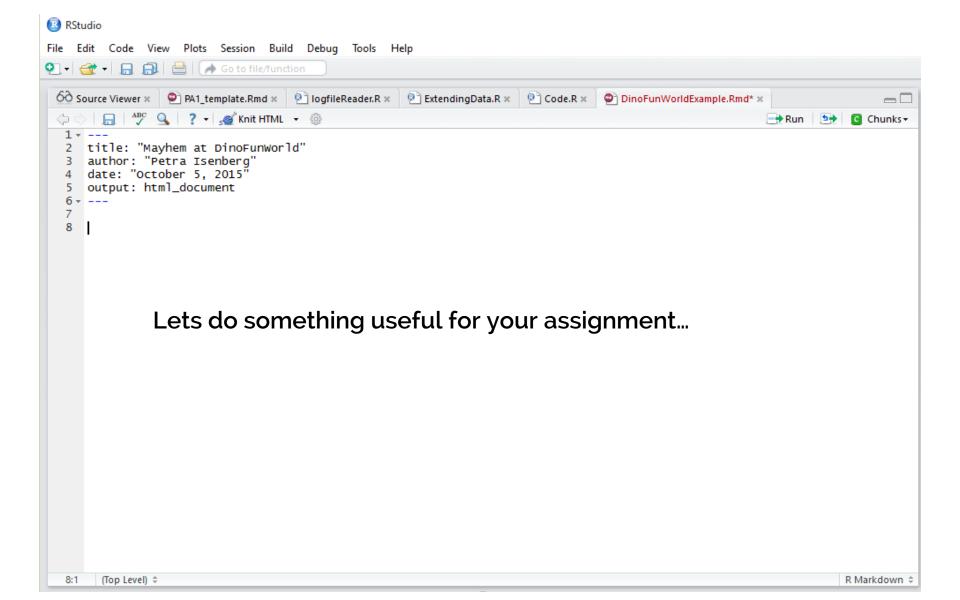
ii. Write - Write content with the easy to use R Markdown syntax


iii. Embed - Embed R code that creates output to include in the report

iv. Render - Replace R code with its output and transform the report into a slideshow, pdf, html or ms Word file.

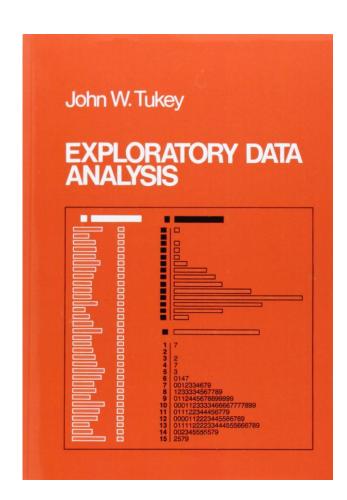

OPEN FILE


- In Rstudio
 - File -> New File -> R Markdown...
 - Give it a title, leave defaults, click OK



NEXT

Click on the Knit HTML Button


EXPLORATORY DATA ANALYSIS

"EXPLORATORY DATA ANALYSIS"

JOHN TUKEY

(IN CONTRAST TO "CONFIRMATORY" DATA ANALYSIS)

Based on insights developed at Bell Labs in the 60's

Introduced a number of novel techniques for visualizing and summarizing data:

- 5-number summary
- Box plots
- Stem and leaf diagrams

EXPLORATORY ANALYSIS IS ABOUT UNDERSTANDING DATA AND CHECKING ASSUMPTIONS

- ■IS THE DATA CORRECT?
- DOES IT MATCH OUR PREVIOUS EXPECTATIONS?
- IS THERE A RELATIONSHIP?
 A CORRELATION?
 A TREND?
 ETC.?

START SIMPLE

IT'S EASY TO GET SIDETRACKED TRYING TO DO COMPLICATED ANALYSES AND MISS THE BASIC STUFF

SOME FIRST STEPS TO START WITH

1. Plot the raw data

2. Plot simple statistics

3. Look at plots togethe

DON'T TRY TO CREATE A
WHOLE NEW CHART ALL AT
ONCE!
CHECK YOUR LOGIC AT
EVERY STEP.

PAINTER'S EYE"

"SLOW

DATA"

STEPHEN FEW

J. BERTIN

```
#Exploratory Data Analysis with RMarkdown
##Loading the Data
```{r}
data <- read.csv("Paper-Author.csv")</pre>
```

. . .







Petra Isenberg

September 28, 2016

### Exploratory Data Analysis with RMarkdown

#### Loading the Data

data <- read.csv("Paper-Author.csv")</pre>

```
##Inspecting the Data with R
###The first few lines of the dataset
```{r}
head (data)
. . .
###A summary of the dataset
```{r}
str(data)
\ \ \ \
```

#### Loading the Data

```
data <- read.csv("Paper-Author.csv")
```

#### Inspecting the Data with R

The first few lines of the dataset

```
head (data)
 ARE THE FIELDS CORRECT?
##
 Paper.DOI Deduped.author.names
1 10.1109/TVCG.2015.2467324
 Rubio-Sanchez, M.
2 10.1109/TVCG.2015.2467324
 Raya, L.
3 10.1109/TVCG.2015.2467324
 WHAT ABOUT THE VALUES?
 Diaz, F.
4 10.1109/TVCG.2015.2467324
 Sanchez, A.
 Setlur, V.
5 10.1109/TVCG.2015.2467471
6 10.1109/TVCG.2015.2467471
 Stone, M.C.
 WHAT ABOUT THE DATA TYPES?
```

#### A summary of the dataset

str(data)

```
'data.frame':
 9667 obs. of 2 variables:
$ Paper.DOI
 : Factor w/ 2752 levels "10.0000/00000001",..: 1166 1166 1166 1166 1182 1182 1220 122
0 1229 1229 ...
 $ Deduped.author.names: Factor w/ 4890 levels "", "Abbasloo, A.",..: 3528 3379 882 3598 3756 4018 1937 1785
3860 115 ...
```

### SOME FIRST STEPS TO START WITH

1. Plot the raw data

2. Plot simple statistics

3. Look at plots together

```
##Some Simple Statistics
```{r}
summary(data)
...
```

Some Simple Statistics

```
summary (data)
```

```
Paper.DOI
                                     Deduped.author.names
##
  10.1109/VAST.2011.6102498 : 17 Groller, E. : 58
  10.1109/VISUAL.2005.1532845: 17 Kaufman, A. : 57
   10.1109/VISUAL.2002.1183812: 15 Kwan-Liu Ma : 51
                       : 14 Ertl, T. : 45
  10.1109/TVCG.2009.164
  10.1109/TVCG.2012.278
                       : 14 Keim, D.A. : 44
  10.1109/TVCG.2014.2346911 : 14 van Wijk, J.J.: 38
##
   (Other)
                           :9576
                                 (Other)
                                              :9374
```

```
##Some Simple Statistics
```{r}
summary(data)
countTable <- as.data.frame(table(data$Deduped.author.names))</pre>
colnames(countTable) <- c("Author", "Freq")</pre>
median <- c(median(countTable$Freq))</pre>
mean <- c(mean(countTable$Freq))</pre>
stdev <- c(sd(countTable$Freq))</pre>
measures <- c("mean", "stdev", "median")</pre>
values <- c(mean, stdev, median)</pre>
descriptiveStats <-data.frame(measures, values)</pre>
descriptiveStats
. . .
```

```
###Plotting some simple statistics
The average and standard deviation of average
paper counts per author
```{r}
library(ggplot2)
ggplot (descriptiveStats, aes (x=measures, y=values))
+ geom bar(stat="identity")
```

**** \ \ \

```
Next, let's look at the distribution
```{r}
sortedCountTable <- countTable[order(-
countTable$Freq),]
#we need to order the levels for our plotting
function to have the right order
sortedCountTable$Author <-
factor(sortedCountTable$Author,levels =
sortedCountTable$Author)
#top1000 <- sortedCountTable[1:1000,]</pre>
boxplot (countTable$Freq, data=countTable)
```

qplot(Author, Freq, data=sortedCountTable)

# Now try to find out how many authors are on a paper on average

### RESOURCE

 https://www.rstudio.com/wpcontent/uploads/2015/02/rmarkdow n-cheatsheet.pdf