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Big Data

● Volume
– Like “really big”, has evolved with time from Tb to Pb

● Variety
– Many types, e.g. text, image, tables

● Velocity
– Acquisition/input speed, output speed

● Variability, Veracity...Vatever

● Traditionally used with predictive analytics
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The Visual Analytics Process

• D. A. Keim, J. Kohlhammer, G. Ellis and F. Mansmann. Mastering The Information Age - Solving Problems with Visual 
Analytics. Eurographics, 2010.

EuroVA 2012 - Vienna 3



Exploration and Latency

3 types of latency to consider for HCI:
1. Continuity Preserving Latency: ~0.1s user feel that 

the system is reacting instantaneously

2. Flow Preserving Latency: ~1s user’s flow of thought 
to stay uninterrupted

3. Attention Preserving Latency: ~10s keeping the 
user’s attention focused on the dialogue

•. R. B. Miller. Response time in man-computer conversational transactions. In 
Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, 
Part I, AFIPS ’68 (Fall, part I), pages 267–277, New York, NY, USA, 1968. ACM.

•. J. Nielsen. Response times: The 3 important limits, https://
www.nngroup.com/articles/response-times-3-important-limits/

•. B. Shneiderman. Response time and display rate in human performance with 
computers. ACM Comput. Surv., 16(3):265–285, Sept. 1984.

https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/


Scaling Visualization

• Vis. does not scale well
– Not in number of items
– Not in number of dimensions

• It needs additional 
methods such as:
– Sampling (of items/dim.)
– Aggregation
– Dimensionality Reduction

• These methods introduce 
artifacts
– Their results should be 

explored too, to be validated!
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Layers of Visual Analytics

Three Layers:
● Data Management
● Analytics
● Visualization+

Interaction
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Examples

● Hierarchical Clustering Explorer

● WikiReactive

● HAL Deduplication Framework

● Real-time sentiment analysis

● Nanocubes

● Progressive tSNE
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Hierarchical Clustering Explorer (Seoh & Shneiderman 2002)

● Data
– Multidimensional (n numerical dimensions)

● Task
– Find clusters that clearly reflect properties in the data

● Volume: In memory
● Variety: none
● Velocity: none

http://www.cs.umd.edu/hcil/hce/
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Hierarchical Clustering Explorer

http://w
w

w
.cs.u m

d.edu /hcil/hc e/
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● How many cluster?
– Many criteria

● Explore interactively
– Vary height (distance)

– Vary number of clusters

– Vary distance function

● Are they good in the end
– Many way to assess but linear!

Hierarchical Clustering and Interaction
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What if the number of vectors increases?

● From 1,600 to 10,000?
– ~100,000,000 entries for the distance matrix

– Memory and Computation still OK

● From 10,000 to 100,000,000?
– Memory and Computation not OK
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What if the number of vectors increases?

● 100,000,000 vectors could fit in memory?
● The distance matrix cannot fit in memory

– It will take hours to compute

● Interaction is not possible any more

● What can we do about it?
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Strategies to cope with Big Data and Visual Analytics

1) Increase the memory?

2) Use a distributed systems?

3) Use a parallel system (HPC)?

4) Use tricks?
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Increase the memory for Big Data Visual Analytics

● How much?
– Say for n = 1,000,000 (106)

● Dataset + distance matrix + hierarchy
● Memory = ???
● Time to compute the distance matrix?

– Assume 106 operations per second

● Conclusion?
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Use a distributed system

● How many machines to perform the 
computation quickly?
– Say 10s

● Distributed system have a high latency
– Usually > 10s, around 30s to minutes

● Not good for interaction
● But can compute results ahead of time
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Use a Parallel System (HPC)

● Much more expensive than a distributed 
system
– But faster

● Do you really need a special architecture?
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Use Tricks: Hybrid Algo.

• Clustering a huge 
dataset?

• HC is quadratic: not 
possible

• K-Means is linear but 
requires a good K

• Sample -> HC -> 
Estimate good K -> k-
Means

• Need a good sampling

Ross, G. and Chalmers, M. (2003) A visual 
workspace for constructing hybrid MDS 
algorithms and coordinating multiple views. 
Information Visualization, 2 (4). pp. 247-257. 

Does not work well for Text 
mining
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Big Data Visual Analytics

● 3 situations according to Hardley Wickham 
https://peadarcoyle.wordpress.com/2015/08/02/interview-with-a-dat
a-scientist-hadley-wickham/

● When data does not fit in memory (1TB):

1) Data can be filtered/selected to become small
– actually small data problems, once you have the right 

subset/sample/summary

2) Analysis can be split into independent chunks
– actually lots and lots of small data problems

3) Don't know how to filter/split, hard case!
– irretrievably big

– Research is working on it

https://peadarcoyle.wordpress.com/2015/08/02/interview-with-a-data-scientist-hadley-wickham/
https://peadarcoyle.wordpress.com/2015/08/02/interview-with-a-data-scientist-hadley-wickham/
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WikiReactive

N. Boukhelifa, F. Chevalier and J.D. Fekete Real-time Aggregation of Wikipedia Data for Visual Analytics. In Proceedings of Visual 
Analytics Science and Technology. VAST '10. 147-154. 2010

• Collect wikipedia changes and computes 
derived information
– Diffs, user contributions, user per character

29
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WikiReactive

● Volume
– 5 million articles in English, many TB of text

● Variety
– Text + previous versions, structure

– Users (id), Talks, categories, stats

● Velocity
– About 100 changes per second

– But each article does not change every second

● HW Category (1, 2, or 3)?
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HAL Deduplication framework

• For each article author added to the HAL 
database

• Computes similarity with all other authors
• Resolve simple case (< or > threshold)
• Show an interface

for the other cases

31
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HAL Deduplication framework

● Volume
– 3 million articles, many TB of text, 3 million authors

● Variety
– Users (id, email, institution, lab, date)

● Velocity
– About 1 change per second

● HW Category (1, 2, or 3)?
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Real-Time Sentiment Analysis

• Christian Rohrdantz, Ming C. Hao, Umeshwar Dayal, Lars-Erik Haug, and Daniel A. Keim. 2012. Feature-Based Visual 
Sentiment Analysis of Text Document Streams. ACM Trans. Intell. Syst. Technol. 3, 2, Article 26 (February 2012), 25 pages.

• For each new document scrapped
• Compute part-of-speech tagging, 

lemmatization, negation detection, feature 
extraction, sentiment detection, sentiment-to-
feature mapping

33
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Real-Time Sentiment Analysis

● Volume
– many million articles read continuously

● Variety
– Time-stamp, text

● Velocity
– As the crawler can work

● HW Category (1, 2, or 3)?
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Nanocubes (Lins et al. 2013)

Lauro Lins, James T. Klosowski, and Carlos Scheidegger. Nanocubes for Real-Time Exploration of Spatiotemporal Datasets. Visualization and Computer Graphics, IEEE 
Transactions on 19, no. 12 (2013): 2456-2465.

http://nanocubes.net/



Thu. Nov 3rd Big Data VA 36

Nanocubes

● Create a spatio-temporal index
● Quickly retrieve distributions from range-

queries
– Over time

– Over space

– Over values

● Index creation can take hours



  

Nanocubes

● Volume
– Many (200) million points

● Variety
– Spatio-temporal data

● Velocity
– Static

● HW Category (1, 2, or 3)?
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Beyond Pre-Computation:
Bounding Time and Quality

• Visualization is User Centric
– Visualization will only show a small amount of data
– Visualization need interactive time
– How can we address the scale in interactive time?

• Analysis is Program Centric
– Analysis will read data, process it and store its results in the end
– Analysis will produce unbounded amounts of data in unbounded 

time
– How can we get something in a bounded time?

• Databases is Data Centric
– Databases will store and retrieve unbounded amounts of data in 

unbounded (but fast) time
– How can we bound time with a specified level of quality?



Progressive VA

• Allow Exploratory tools 
to work while the 
computation is being 
done

Williams, M.; Munzner, T., "Steerable, Progressive 
Multidimensional Scaling," in INFOVIS 2004. 

Charles D. Stolper, Adam Perer, and David Gotz. 
 Progressive Visual Analytics.  IEEE TVCG (Volume 20, 
Issue 12, 2014).



Progressive MDS
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Progressive tSNE (Pezzoti et al. 2016)

● Multidimensional 
projection method

● Input: points in nD
● Output: points in 2D
● Similar points nearby

https://lvdmaaten.github.io/tsne/
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Progressive tSNE

● Compute distances
● Iterate to converge
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Progressive tSNE

● Volume
– many million points

● Variety
– N-D points

● Velocity
– Static or dynamic

● HW Category (1, 2, or 3)?
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