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SLOAN DIGITAL SKY 
SURVEY
• started in 2000
• in first weeks, collected more data than 

entire history of astronomy before

http://www.sdss.org/



WALMART

Image http://harryhammer.wordpress.com/2010/03/20/wal-mart-a-true-champion/

• 1 million customer transactions per 
hour

• likely has information on >145 million 
Americans [1]

[1] http://centerformediajustice.org/wp-content/files/WALMART_PRIVACY_MR.pdf



…AND MORE
• YouTube users upload 300 hours of 

new video every minute of the day 
http://expandedramblings.com/index.php/youtube-statistics/

• Facebook has currently on average 1.04 
billion active users daily http://newsroom.fb.com/company-info/

• the Library of Congress adds 12,000 
items to their collection every day 
http://www.loc.gov/about/fascinating-facts/



WHAT IS USEFUL?
• data != useful information
• you want insight

 analysis is needed



ANALYSIS IS NOT SIMPLE

http://www.infoworld.com/article/2611729/big-data/big-data-without-good-analytics-can-lead-to-bad-decisions.html

Gary King, Harvard

• research project: predict U.S. 
unemployment rate

• method: Twitter & social media analysis
 sentiment analysis by word count

jobs

unemployment

classifieds

Look for counts of those 
words & correlate to monthly 
unemployment rate



ANALYSIS IS NOT SIMPLE

• spike in people looking for jobs?
• lots of people going to get laid off?

Jobs



HUMAN-IN-THE LOOP
• it is sometimes dangerous to rely on 

purely automated analyses
• human judgment and intervention often 

needed
– for: background information, flexible 

analysis (unintended directions), creativity
– because: data can be incomplete, 

inconsistent, or deceptive



COURSE OBJECTIVES
• learn about data, its properties, and its 

problems
• learn how to analyze (& visualize) data

– Getting data
– Cleaning data
– Analyzing data
– Visualizing data (with existing tools)

• Normally: information visualization course directly 
follows this course
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OFFICE HOURS
• office: at Université Paris Sud / 

Bâtiment 660 (plateau de Saclay)
• Will be @ Dresden until Friday 12:00h



COURSE INFO

Class website: 
http://tinyurl.com/VADresden
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LESSON PLAN
– Lecture 1: Introduction
– Lecture 2: Data Collection + Data and 

Ethics
– Lecture 3: Data Cleaning / Wrangling
– Lecture 4: Sensemaking
– Lecture 5: Basic Statistics
– Lecture 6: Reproducible Research
– Lecture 7: Analysis at Scale



TUTORIALS
• You will learn about:

– Data scraping
– Data cleaning
– Simple statistical analysis with R
– Analysis with Tableau
– Making reports



GRADING SCHEME
• Assignments: 30%

– check the website for due dates of 
assignments and how to submit them 

• Project: 70% 



READINGS
• I will announce readings on a per-

lecture basis
• they will mostly be meant as additional 

information



QUESTIONS



WHAT IS VISUAL ANALYTICS
And where does it come from?



WHAT IS DATA ANALYSIS?
• traditionally: data analysis = statistics
• generally: data analysis = careful thinking 

about evidence (data)
• data analysis now covers a range of 

activities and skills
– defining your problem
– disassembling problems and data into 

analyzable pieces
– evaluate the data & draw conclusions
– make or recommend a decision

reference [3]



DATA ANALYSIS EXAMPLE
What might we be interested in analyzing?
What do you notice in the data?

reference [3]

September October November December January February

Gross sales $5,280,000 $5,501,000 $5,469,000 $5,480,000 $5,533,000 $5,554,000

Target sales $5,280,000 $5,500,000 $5,729,000 $5,968,000 $6,217,000 $6,476,000

Ad costs $1,056,000 $950,400 $739,200 $528,000 $316,800 $316,800

Social network costs $0 $105,600 $316,800 $528,000 $739,200 $739,200

Unit prices $2.00 $2.00 $2.00 $1.90 $1.90 $1.90



reference [3]



VISUAL ANALYTICS
“the science of analytical reasoning 
facilitated by interactive visual 
interfaces” [1]
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VISUAL ANALYTICS

Visual analytics combines automated analysis
techniques with interactive visualizations for an 
effective understanding, reasoning and decision 
making on the basis of very large and complex data 
sets [5].



GRAND CHALLENGE
Enable profound insight

– allow an analyst to examine
• massive, multi-dimensional, multi-source, time-

varying information
• to make the right decisions 

(in time-critical manner)



METHOD
• combine automated analysis with 

human intervention
• represent data visually to

– allow interaction
– insight generation
– drawing of conclusions
– make better decisions

Reference [2]



SCOPE

automated analysis human analysis

Reference [5]



CONFIRM VS. EXPLORE
confirmatory analysis

– start with a hypothesis 
about the data

– confirm that it is true

exploratory analysis
– likely no a-priori 

information about the 
data

– not sure about patterns 
and information present

– explore to create 
hypotheses & confirm 
later

focus of visual analytics
focus of fully automated 
analysis methods



SCOPE
visual analytics = an iterative process that 
involves 

– information gathering
– data preprocessing
– knowledge representation
– interaction
– decision making.

Reference [2]



EXAMPLES



EXAMPLES

https://www.youtube.com/watch?v=K9PvskathGI



EXAMPLES

For this and the following videos, see: 
http://ieeevis.org/year/2014/info/overview-amp-topics/paper-sessions



EXAMPLES



EXAMPLES



EXAMPLES



EXAMPLES



EXAMPLES



EXAMPLES

https://www.youtube.com/watch?v=_Ytz8op5Iig&list=PL722C2D5AE0BF7E99



REQUIREMENTS
development & understanding of

– data transformations & analysis algorithms
– analytical reasoning techniques
– visual representations and interactions
– techniques for production, presentation, 

and dissemination



CHALLENGES
human reasoning & decision making

– understanding and supporting how 
humans reason about data

– support convergent & divergent thinking
– create interfaces that are meaningful, 

clear, effective, and efficient



adoption
– communicate benefits of developed tools 

to drive frequent use
– make tools accepted by users

CHALLENGES



evaluation
– develop methods to compare novel tools 

to existing ones
– assess how good (effective, efficient, etc.) 

a tool is
• very difficult for measures other than time & 

error, e.g. how many insights a tool generates

CHALLENGES



CHALLENGES
data

– help machines understand semantics
– quality of data is often low
– dealing with uncertainty in the data
– understanding the history or 

trustworthiness of data
– quantity (e.g. large and streaming data)



CHALLENGES
scalability

– data quantity (e.g. large and streaming 
data)

– visualization of data
– complexity and urgency of tasks
– collaboration
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information glut = we can access more information than we can process



SCALABILITY TYPES
information scalability

– capability to extract relevant information 
from massive (possibly dynamically 
changing) data streams

– methods: abstract data sets, filter & reduce 
data, represent data in multi-resolution 



SCALABILITY TYPES
visual scalability

– capability to of visualizations to effectively 
display massive data sets in terms of 
number of data items or dimensions

– depends on quality of layout, interaction 
techniques, perceptual capabilities

Treemap of a million items
http://www.cs.umd.edu/hcil/millionvis/



SCALABILITY TYPES
display scalability

– capability to of visualizations and tools to 
scale to different types of displays

Sony SmartWatch



SCALABILITY TYPES
human scalability

– human skills don’t scale but numbers of 
humans involved in analysis can

– techniques must scale from a single to 
multiple users



SCALABILITY TYPES
• software scalability

– software systems and algorithms must 
scale to larger data & different data

• others
– privacy and security in multi-user settings
– collaboration across languages and 

borders



CHALLENGES
problem interdependence

– analysis in the “real world” often does not 
consist of isolated problems or questions

– problems are often correlated and how 
one is solved influences how one should 
approach another

– synthesis of analyses is needed



CHALLENGES
integration of analysis methods

– it is simple to do many isolated analyses
– it is hard to integrate them well into one 

tool, interface for human analysis



HISTORY
• outgrowth of the Scientific & 

Information Visualization community
• started with US National 

Visualization and Analytics Center 
(NVAC) at PNNL in 2004

• developed the first research and 
development agenda “Illuminating 
the Path”

• sponsored initially by DHS (US 
Department of Homeland Security)



ORIGINAL GOALS
• analyzing terrorist threats
• safeguarding boarders and ports
• preparing for and responding to 

emergencies

 now only part of the larger research 
goals



HISTORY
• VAST symposium  conference

– visual analytics, science, and technology

• part of the IEEE Visualization 
conference

• started Visual Analytics as its own 
research area in 2006



HISTORY
• 2008 EU funds VisMaster, a 

Coordination Action to join European 
academic and industrial R&D

• in Europe initial focus not on 
“homeland” security, rather broad 
applicability
– physics, astronomy, climate monitoring, 

weather, etc.



HISTORY
• many centers in Europe
• In France mainly Inria
• In Germany mainly: Konstanz, Fraunhofer, 

Rostock, Stuttgart
• web: visual-analytics.eu
• book: Mastering the information age –

solving problems with visual analytics
• YouTube: you saw it already



FUTURE

http://www.cnbc.com/id/100792215#.
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