### VISUALIZING MULTI-ATTRIBUTE DATA DATA TABLES

### Petra Isenberg, Anastasia Bezerianos



# RECAP

- 1D (linear)
- Temporal
- 2D (maps)
- 3D
- nD (relational)
- Trees (hierarchies)
- Networks (graphs)



Shneiderman: The Eyes Have It

# DATA TABLES -TERMINOLOGY





## WHAT COULD BE THE KEY HERE?



Cell containing value

# WHAT DATA TYPE IS SUITABLE FOR A KEY?



ltems (rows)



Cell containing value

### KEYS VS. VALUES

key attributes are also sometimes called:

- independent attribute
- dimension

value attributes are also sometimes called:

- dependent attribute
- measure

## LEVELS

### = unique values for a categorical or ordered attribute

| Abc<br>Vispubdata-Grobid-min-c<br>Conference | #<br>Vispubdata<br>Year | Abc<br>Vispubdata-Grobid-min-clean<br>Paper.Title |
|----------------------------------------------|-------------------------|---------------------------------------------------|
| InfoVis                                      | 2015                    | A comparative study                               |
| InfoVis                                      | 2015                    | A Linguistic Approach                             |
| InfoVis                                      | 2015                    | A Psychophysical Inv                              |
| InfoVis                                      | 2015                    | A Simple Approach fo                              |
| InfoVis                                      | 2015                    | Acquired Codes of Me                              |
| InfoVis                                      | 2015                    | AggreSet: Rich and Sc                             |
| InfoVis                                      | 2015                    | AmbiguityVis: Visuali                             |
| InfoVis                                      | 2015                    | Automatic Selection                               |
| InfoVis                                      | 2015                    | Beyond Memorability                               |
| InfoVis                                      | 2015                    | Beyond Weber's Law:                               |
| InfoVis                                      | 2015                    | Evaluation of Parallel                            |
| InfoVis                                      | 2015                    | Guidelines for Effecti                            |
| InfoVis                                      | 2015                    | High-Quality Ultra-Co                             |
| InfoVis                                      | 2015                    | HOLA: Human-like Ort                              |
| InfoVis                                      | 2015                    | How do People Make                                |



### CONFERENCE: InfoVis, Vis, SciVis, VAST

YEAR: 1990 – 2015

# PAPER.TITLE: >2500 different

### VISPUBDATA

### **ATTRIBUTES**

| 1S<br>1 | 1-C | #<br>Vispubdata<br>Year | Abc<br>Vispubdata-Grobid-min-clean<br>Paper.Title | Abc<br>Vispubdata-Grobid-min-clean<br>Paper.DOI | Abc<br>Vispubdata-Grobid-min-clean<br>Link | #<br>Vispubdata-Grobid<br>First.page | #<br>Vispubdata-Grobid<br>Last.page | Abc<br>Vispubdata-Grobid-min-clean<br>Paper.typeC.conf | Abc<br>Vispubdata-Grobid-min-clean<br>Abstract | Abc<br>Vispubdata-Grobid-min-clean<br>Author.Names | Abc<br>Vispubdata-Grobid-min-clean<br>First.Author.Affilia | Abc<br>Vispubdata-Grobid-min-clean<br>Deduped.author.n | Abc<br>Vispubdata-Grobid-min-clean<br>References | Abc<br>Vispubdata-Grobid-min-clean<br>Author.Keywords | Abc<br>Vispubdata-Grobid-min-clean<br>OCR.Authors |
|---------|-----|-------------------------|---------------------------------------------------|-------------------------------------------------|--------------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------------------------|------------------------------------------------|----------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|
| 2       |     | 2015                    | A comparative study                               | 10.1109/TVCG.2015                               | http://dx.doi.org/10                       | 619                                  | 628                                 | J                                                      | RadViz and star coord                          | Rubio-Sanchez, M.;Ra                               |                                                            | Rubio-Sanchez, M.;Ra                                   | 10.1109/VAST.2010                                | RadViz, Star coordina                                 | Rubio-S´Anchez,Ma                                 |
|         |     | 2015                    | A Linguistic Approach                             | 10.1109/TVCG.2015                               | http://dx.doi.org/10                       | 698                                  | 707                                 | J                                                      | When data categorie                            | Setlur, V.;Stone, M.C.                             | ;                                                          | Setlur, V.;Stone, M.C.                                 | null                                             | linguistics, natural la                               | Setlur,Vidya;Stone,M                              |
| r       |     | 2015                    | A Psychophysical Inv                              | 10.1109/TVCG.2015                               | http://dx.doi.org/10                       | 479                                  | 488                                 | J                                                      | Physical visualization                         | Jansen, Y.;Hornbaek, K.                            | Univ. of Copenhagen,                                       | Jansen, Y.;Hornbaek, K.                                | 10.1109/TVCG.2012                                | Data physicalization,                                 | Jansen, Yvonne; Hornb                             |
| r       |     | 2015                    | A Simple Approach fo                              | 10.1109/TVCG.2015                               | http://dx.doi.org/10                       | 678                                  | 687                                 | J                                                      | General methods for                            | Simonetto, P.;Archam                               |                                                            | Simonetto, P.;Archam                                   | 10.1109/TVCG.2011                                | Euler diagrams, Boun                                  | Simonetto,Paolo;Arc                               |
| n       |     | 2015                    | Acquired Codes of Me                              | 10.1109/TVCG.2015                               | http://dx.doi.org/10                       | 509                                  | 518                                 | J                                                      | While information vis                          | Byrne, L.;Angus, D.;W                              |                                                            | Byrne, L.;Angus, D.;W                                  | 10.1109/TVCG.2013                                | Visual Design, Taxono                                 | Byrne,Lydia;Angus,D                               |
| n       |     | 2015                    | AggreSet: Rich and Sc                             | 10.1109/TVCG.2015                               | http://dx.doi.org/10                       | 688                                  | 697                                 | J                                                      | Datasets commonly i                            | Yalcin, M.A.;Elmqvist,                             | Univ. of Maryland, Co                                      | Yalcin, M.A.;Elmqvist,                                 | 10.1109/TVCG.2011                                | Multi-valued attribut                                 | Adil Yalçın,M;Beders                              |
|         |     | 2015                    | AmbiguityVis: Visuali                             | 10.1109/TVCG.2015                               | http://dx.doi.org/10                       | 359                                  | 368                                 | J                                                      | Node-link diagrams p                           | Yong Wang;Qiaomu S                                 |                                                            | Yong Wang;Qiaomu S                                     | 10.1109/TVCG.2006                                | Visual Ambiguity, Vis                                 | Wang,Yong;Shen,Qia                                |
| nfoVı.  |     | 2015                    | Automatic Selection                               | 10.1109/TVCG.2015                               | http://dx.doi.org/10                       | 669                                  | 677                                 | J                                                      | Effective small multi                          | Anand, A.;Talbot, J.                               | ;                                                          | Anand, A.;Talbot, J.                                   | 10.1109/VAST.2010                                | Small multiple displa                                 | Anand,Anushka;Talbo                               |
| nfoVis  |     | 2015                    | Beyond Memorability                               | 10.1109/TVCG.2015                               | http://dx.doi.org/10                       | 519                                  | 528                                 | J                                                      | In this paper we mov                           | Borkin, M.A.;Bylinskii                             |                                                            | Borkin, M.;Bylinskii, Z                                | 10.1109/TVCG.2012                                | Information visualiza                                 | null                                              |
| nfoVis  |     | 2015                    | Beyond Weber's Law:                               | 10.1109/TVCG.2015                               | http://dx.doi.org/10                       | 469                                  | 478                                 | J                                                      | Models of human per                            | Kay, M.;Heer, J.                                   | ;                                                          | Kay, M.;Heer, J.                                       | 10.1109/TVCG.2014                                | Weber's law, percept                                  | Kay,Matthew;Heer,Je                               |
| nfoVis  |     | 2015                    | Evaluation of Parallel                            | 10.1109/TVCG.2015                               | http://dx.doi.org/10                       | 579                                  | 588                                 | J                                                      | The parallel coordina                          | Johansson, J.;Forsell,                             | Norrkoping Visualiza                                       | Johansson, J.;Forsell,                                 | 10.1109/TVCG.2014                                | Survey, evaluation, g                                 | Johansson, Jimmy; For                             |
| nfoVis  |     | 2015                    | Guidelines for Effecti                            | 10.1109/TVCG.2015                               | http://dx.doi.org/10                       | 489                                  | 498                                 | J                                                      | Semi-automatic text                            | Strobelt, H.;Oelke, D.;                            |                                                            | Strobelt, H.;Oelke, D.;                                | 10.1109/TVCG.2012                                | Text highlighting tec                                 | Strobelt,Hendrik;Oel                              |
| nfoVis  |     | 2015                    | High-Quality Ultra-Co                             | 10.1109/TVCG.2015                               | http://dx.doi.org/10                       | 339                                  | 348                                 | J                                                      | Prior research into ne                         | Yoghourdjian, V.;Dwy                               |                                                            | Yoghourdjian, V.;Dwy                                   | 10.1109/TVCG.2008                                | Network visualizatio                                  | Yoghourdjian,Vahan;                               |
| nfoVis  |     | 2015                    | HOLA: Human-like Ort                              | 10.1109/TVCG.2015                               | http://dx.doi.org/10                       | 349                                  | 358                                 | J                                                      | Over the last 50 year                          | Kieffer, S.;Dwyer, T.;                             |                                                            | Kieffer, S.;Dwyer, T.;                                 | 10.1109/TVCG.2006                                | Graph layout, orthog                                  | Kieffer,Steve;Dwyer,                              |
| nfoVis  |     | 2015                    | How do People Make                                | 10.1109/TVCG.2015                               | http://dx.doi.org/10                       | 499                                  | 508                                 | J                                                      | In this paper, we wou                          | Sukwon Lee;Sung-He                                 | Sch. of Ind. Eng., Purd                                    | Sukwon Lee;Sung-He                                     | 10.1109/TVCG.2013                                | Sensemaking model, i                                  | Lee,Sukwon;Kim,Sun                                |
| nfoVis  |     | 2015                    | Improving Bayesian R                              | 10.1109/TVCG.2015                               | http://dx.doi.org/10                       | 529                                  | 538                                 | J                                                      | Decades of research                            | Ottley, A.;Peck, E.M.;                             |                                                            | Ottley, A.;Peck, E.M.;                                 | 10.1109/TVCG.2014                                | Bayesian Reasoning,                                   | Ottley,Alvitta;Peck,E                             |
| nfoVis  |     | 2015                    | Matches, Mismatche                                | 10.1109/TVCG.2015                               | http://dx.doi.org/10                       | 449                                  | 458                                 | J                                                      | The energy performa                            | Brehmer, M.;Ng, J.;Ta                              |                                                            | Brehmer, M.;Ng, J.;Ta                                  | 10.1109/TVCG.2011                                | Design study, design                                  | Brehmer,Matthew;N                                 |

## THE DATA CUBE



| Country     | Year | Child mortality | Births per woman |
|-------------|------|-----------------|------------------|
| Afghanistan | 2014 | 68.1            | 4.8              |
| Afghanistan | 2013 | 69.9            | 5.1              |
| France      | 2014 | 3.6             | 2.0              |
| France      | 2013 | 3.6             | 2.0              |
| USA         | 2014 | 5.7             | 5.9              |
| USA         | 2013 | 1.9             | 1.9              |

# MULTI-ATTRIBUTE DATA – OUR VIEW TODAY

### n x d matrix

n attributes

| Ь | items (   | 'data | noints) | \$ |
|---|-----------|-------|---------|----|
| u | ILEIIIS ( | uala  | μυπτε   | ,  |

| Country     | Year | Child mortality | Births per woman |
|-------------|------|-----------------|------------------|
| Afghanistan | 2014 | 68.1            | 4.8              |
| Afghanistan | 2013 | 69.9            | 5.1              |
| France      | 2014 | 3.6             | 2.0              |
| France      | 2013 | 3.6             | 2.0              |
| USA         | 2014 | 5.7             | 5.9              |
| USA         | 2013 | 1.9             | 1.9              |

### **ARRANGING TABULAR DATA**

In Space

## ARRANGING DATA



### **QUANTITATIVE VALUES**



• Let's start with two attributes: country & income per person

| Country     | Income per<br>person |
|-------------|----------------------|
| Afghanistan | 850                  |
| France      | 29500                |
| US          | 41000                |

### 1. FIND A LAYOUT



| Country     | Income per<br>person |
|-------------|----------------------|
| Afghanistan | 850                  |
| France      | 29500                |
| US          | 41000                |



### 2. CHOOSE A VISUAL ENCODING & MARK

### E.g. position + circle



| . FIND A LAYOUT | Country     | Income per<br>person | Life<br>expectancy |
|-----------------|-------------|----------------------|--------------------|
|                 | Afghanistan | 850                  | 57                 |
|                 | France      | 29500                | 81                 |
|                 | US          | 41000                | 78                 |

### How do we extend this to 3 data attributes?



| 1. FIND A LAYOUT      | Country     | Income per<br>person    | Life<br>expectancy |
|-----------------------|-------------|-------------------------|--------------------|
|                       | Afghanistan | 850                     | 57                 |
| 200 years 🔨           | France      | 29500                   | 81                 |
|                       | US          | 41000                   | 78                 |
| France<br>Afghanistan | <b>U</b> S  |                         |                    |
| \$0                   | in          | \$200<br>some per perso | k<br>on            |

## SCATTERPLOTS

- two quantitative values
- horizontal and vertical spatial dimensions
- mark type = point

### GARMINDER FACTS TEACH ABOUT





when marks are sized, the chart is often called a bubble chart or bubble plot <u>https://www.gapminder.org/</u>

## TASKS

- find trends
- find outliers
- show distribution
- show correlation
- locate clusters



# GLYPHS

# marks can be replaced with glyphs

### glyphs are themselves composed of multiple marks



http://rosuda.org/software/Gauguin/gauguin.html



https://engineering.purdue.edu/~elm/projects/ gpuvis.html

## GLYPHS

- Characterized generally by lack of reference structures (grid lines, axes labels, ...)



From Ward, 2002 A taxonomy of glyph placement strategies for multidimensional data visualization

## CHERNOFF FACES

- features of a human face encode data values (e.g. slant of eye brows, size of eyes, ...)
- reasoning: humans are good at differentiating faces and reading face features
- problem: chernoff faces have generally been found not to be very effective



Herman Chernoff, <u>The Use of Faces to Represent Points in K-Dimensional Space</u> Graphically, 1973.

### EXAMPLE: STAR GLYPHS

- Lay out dimension in radial fashion
- Draw each point as a ring



### STAR GLYPHS

RARRA

200 A A A A A -A 4 A A A A At A 2 8 A B A 200 S A A × A A As 47 A A Bo R R R An 1 Any. X A A X × A D A R A GA 6 00 R 63 X × R R R R X X X XX X M X W. X X 25 XXBBX R R X R R X X × × X R

From: Ward Multivariate Data Glyphs: Principles and Practice. Handbook of Data Visualization (2008)

### **SHOW CATEGORICAL REGIONS**

Separate, Order, and Align

## CATEGORICAL VALUES

spatial position is an ordered magnitude visual channel

 categorical attributes are unordered identities (no magnitude)

 $\rightarrow$  cannot be encoded with spatial position

• BUT: can be expressed with a spatial region

## REGIONS

- contiguous bounded areas
- distinct from one another
- need to be separated, ordered, and aligned



### LIST ALIGNMENT

ONE KEY

### LIST ALIGNMENT

### separate into regions by key

E.g. length + rectangle





### ALIGN

### align regions of key categorical values along one axis in a common frame



## ORDER

- using a derived attribute such as alphabet
- and/or using dependent data values



# BAR CHARTS

| DATA   | one quantitative value attribute, one categorical key attribute                                                              |
|--------|------------------------------------------------------------------------------------------------------------------------------|
| ENCODE | line marks, express value attribute with aligned vertical position (length), separate key attribute with horizontal position |
| TASK   | lookup and compare values                                                                                                    |
| SCALE  | key attribute: dozens to hundreds of levels                                                                                  |



### ALTERNATIVE ALIGNMENT



https://www.ec.gc.ca/indicateurs-indicators/default.asp? lang=en&n=1BCD421B-1 Stacked bar chart

- each bar is a composite glyph
- each bar part encodes a value
- composite glyphs arranged as a list according to primary key
- color used to distinguish secondary key

### STACKED BARS VS. NORMALIZED STACKED BARS




# STACKED BARS



- ADVANTAGE
  - can compare totals and lowest level well
- DISADVANTAGE
  - upper levels of secondary key require comparison against non-aligned scale

# STACKED BARS

| DATA   | MD table; one quantitative value attribute, two categorical key attributes                                                 |
|--------|----------------------------------------------------------------------------------------------------------------------------|
| ENCODE | bar glyph: length-encoded subcomponents for each level of secondary key attribute separate bars by category of primary key |
| TASK   | part-to-whole relationship, lookup values, find trends                                                                     |
| SCALE  | key attribute (main axis): dozens to hundreds of levels<br>key attribute (stacked glyph axis): several to one dozen        |



# STREAMGRAPH

#### February 23, 2008

SIGN IN TO E-MAIL OR SAVE THIS FEEDBACK

#### The Ebb and Flow of Movies: Box Office Receipts 1986 - 2008

Summer blockbusters and holiday hits make up the bulk of box office revenue each year, while contenders for the Oscars tend to attract smaller audiences that build over time. Here's a look at how movies have fared at the box office, after adjusting for inflation.



Sources: Baseline StudioSystems; Box Office Mojo

| DATA   | MD table; one quantitative value attribute (e.g. counts), one ordered key attribute (e.g. time), one categorical key attribute (e.g. film) |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------|
| DERIVE | depth order of layers is derived from a quantitative attribute                                                                             |
| ENCODE | use derived geometry to show layers across time, layer height encodes count                                                                |
| SCALE  | key attributes (time, main axis): hundreds of time points key attributes (short axis): dozens to hundreds                                  |





### LINE CHART

augment with line connection marks emphasize the ordering and show trends ... should not be used with categorical keys!



### ASPECT RATIO SELECTION



[Cleveland]

#### TO FACILITATE PERCEPTION OF TRENDS, MAXIMIZE THE DISCRIMINABILITY OF LINE SEGMENT ORIENTATIONS



TWO SEGMENTS ARE MAXIMALLY DISCRIMINABLE WHEN THEIR AVG ABSOLUTE ANGLE IS 45°

OPTIMIZE THE ASPECT RATIO TO BANK TO 45°

## ALTERNATIVE METHODS



Practical advice:

CHOOSE AN ASPECT RATIO THAT EMPHASIZES THE IMPORTANT DETAILS FOR YOUR TASK

[TALBOT ET AL, 2011]

#### **MATRIX ALIGNMENT**

Two keys



https://ldld.samizdat.cc/2016/tag/catalog/

# HEATMAP

#### Hotel 2





http://www.ra.cs.uni-tuebingen.de/software/RPPApipe/doc/ documentation.htm

# HEATMAP

| DATA   | Table; two categorical key attributes, one quantitative value attribute                                         |
|--------|-----------------------------------------------------------------------------------------------------------------|
| ENCODE | 2D matrix alignment of area marks, e.g. with diverging color map                                                |
| TASK   | find clusters, outliers; summarize                                                                              |
| SCALE  | items: ~1 million (on 1000x1000px), categorical attribute levels: hundreds, quantitative attribute levels: 3-11 |



# BACK TO OUR ORIGINAL EXAMPLE

| Country     | Income per<br>person | Life<br>expectancy | Children<br>per woman |
|-------------|----------------------|--------------------|-----------------------|
| Afghanistan | 850                  | 57                 | 7.1                   |
| France      | 29500                | 81                 | 1.9                   |
| US          | 41000                | 78                 | 2.1                   |

#### now with 4 attributes



### ADD ANOTHER VISUAL ENCODING



Does not scale well to more attributes

### ADD ANOTHER VISUAL ENCODING





# ADD AN AXIS



# SCATTERPLOT MATRIX

#### This idea scales relatively well

| Energy Cons                           | ۰۰۰۰ گون<br>1988ء م | 99760. 8, 0 00<br>0<br>0<br>0 | ૾૾૾૾૾ૢૢૢૢૢૢૢૢૢ૾                       | ******<br>*****        |
|---------------------------------------|---------------------|-------------------------------|---------------------------------------|------------------------|
|                                       | Current Acc         | ê                             | Service .                             |                        |
| ۰                                     |                     | ٠                             | ٠                                     | ۰                      |
| •                                     | •                   | External D                    | •                                     | 0<br>0                 |
| °<br>%                                | ***<br>***          |                               | 0<br>00<br>4000000 0                  | 000 000 00 00 00 00 00 |
| 0                                     | ۰                   | ٥                             | Inflation H                           | •                      |
| <b>š</b>                              | . <b>k</b>          | <b>Å</b> 800 00               |                                       | & e ********* .        |
| · · · · · · · · · · · · · · · · · · · | • • • • • • • • • • |                               | · · · · · · · · · · · · · · · · · · · | GDP per Caj            |

Image Source: Wikipedia

## SCATTERPLOT MATRIX

| DATA   | Table                                                                                                           |
|--------|-----------------------------------------------------------------------------------------------------------------|
| ENCODE | 2D matrix alignment of area marks, e.g. with diverging color map                                                |
| TASK   | find clusters, outliers; summarize                                                                              |
| SCALE  | items: ~1 million (on 1000x1000px), categorical attribute levels: hundreds, quantitative attribute levels: 3-11 |

### **SPATIAL AXIS ORIENTATION**

An additional design choice



#### parallel coordinates

Back to our original example



#### Parallel Coordinates



#### parallel coordinates



 show correlations between neighboring axes

#### MULTIDIMENSIONAL DETECTIVE

Alfred Inselberg<sup>\*</sup>, Multidimensional Graphs Ltd<sup>†</sup> & Computer Science Department Tel Aviv University, Israel

ajjsreal@math.tau.ac.il

#### Abstract

 $\mathcal{T}$  he display of multivariate datasets in parallel coordinates, transforms the search for relations among the variables into a 2-D pattern recognition problem. This is the basis for the application to Visual Data Mining. The Knowledge Discovery process together with some general guidelines are illustrated on a dataset from the production of a VLSI chip. The special strength of parallel coordinates is in modeling relations. As an example, a simplified Economic Model is constructed with data from various economic sectors of a real country. The visual model shows the interelationship and dependencies between the sectors, circumstances where there is competition for the same resource, and feasible economic policies. Interactively, the model can be used to do trade-off analyses, discover sensitivities, do approximate optimization, monitor (as in a Process) and Decision Support.

#### Introduction

 $\mathcal{I}n$  Geometry parallelism, which does not require a notion of angle, rather than orthogonality is the more fundamental concept. This, together with the fact that orthogonality "uses-up" the plane very

fast, was the inspiration in 1959 for "Parallel" Coordinates. The systematic development began in 1977 [4]. The goals of the program were and still are (see [6] and [5] for short reviews) the visualization of multivariate/multidimensional problems without loss of information and having the properties:

- 1. Low representational complexity. Since the number of axes, N equals the number of dimensions (variables) the complexity is O(N),
- 2. Works for any N,
- Every variable is treated uniformly (unlike "Chernoff Faces" and various types of "glyphs"),
- The displayed object can be recognized under projective transformations (i.e. rotation, translation, scaling, perspective),
- The display easily/intuitively conveys information on the properties of the Ndimensional object it represents,
- The methodology is based on rigorous mathematical and algorithmic results.

Parallel coordinates (abbr.||-coords) transform multivariate relations into 2-D patterns, a property that is well suited for Visual Data Mining.

Senior Fellow San Diego SuperComputing Center
†36A Yehuda Halevy Street, Raanana 43556, Israel



#### Original Example from Inselberg 1997

### THE ORDER OF AXES MATTERS



Eurographics 2013, STAR Report J. Heinrich, D. Weiskopf

#### **REDUCE CLUTTER - HIGHLIGHT CLUSTERS**

Lots of work on this. For example:



(a) A linear transfer function has been applied to the high-precision texture in order to prevent cluttering and to provide overview of the data.



used and the outliers are visible even through high-density regions.

(b) A logarithmic transfer function is applied to a selected cluster. The

structure is preserved and emphasis is put on the low density regions.



(c) Local cluster outliers are enhanced. A square root transfer function is (d) A complementary view of the clusters with uniform bands. 'Feature animation' presents statistics about the clusters and acts as a guidance.

**Revealing Structure within Clustered** Parallel Coordinates Displays, InfoVis 2005

## HOW TO DRAW THE LINES

#### Goal: avoid ambiguity



lines

curves

Eurographics 2013, STAR Report J. Heinrich, D. Weiskopf

# RADIALAXES



Polar

# EXAMPLE: STAR PLOT

• = radial line chart



# PIE CHARTS



### POLAR AREA CHARTS


#### **SPATIAL LAYOUT DENSITY**



#### MAXIMIZE THE RATIO OF:

### (NUMBER OF ENTRIES IN DATA) (AREA OF THE GRAPHIC)

#### DATA DENSITY – SHRINK THE GRAPHICS

#### Annual Worldwide Distributions of Live Births

Live births per 1,000 population



#### "SMALL MULTIPLES"

Live births per 1,000 population

#### DATA DENSITY – SHRINK THE GRAPHICS

Placed in the relevant context, a single number gains meaning. Thus the most recent measurement of glucose should be compared with earlier measurements for the patient. This data-line shows the path of the last 80 readings of glucose:

which glucose 6.6

Lacking a scale of measurement, this free-floating line is dequantified. At least we do know the value of the line's right-most data point, which corresponds to the most recent value of glucose, the number recorded at far right. Both representations of the most recent reading are tied together with a color accent:

www.hardhay glucose 6.6

Some useful context is provided by showing the *normal range* of glucose, here as a gray band. Compared to normal limits, readings above the band horizon are elevated, those below reduced:

manuthy glucose 6.6 or glucose wath the 6.6

#### SPARKLINES & WORD-SCALE VIS

#### Science fiction

From Wikipedia, the free encyclopedia

For other uses, see Science fiction (disambiguation).

33k visits in last 30 days

Science fiction is a genre of fiction dealing with imaginati content such as futuristic settings, futuristic science and technology, space travel, time travel, parallel universes, and extraterrestrial life. It often explores the potential consequence

#### SPARKLINES & WORD-SCALE VIS

Gonzalo Higuaín slides a cross in from the right and Ronaldo, at the front post, shoots off target.



#### MAXIMIZE THE RATIO OF

### (INK USED TO SHOW DATA) (TOTAL INK USED)













### MINIMIZE CHART JUNK





# Wayne Lytle The Dangers of GLITZINESS and other Visualization Faux Pas

or ... "What's Wrong with this Visualization?"

#### TUFTE'S INTEGRITY PRINCIPLES

- MAXIMIZE THE DATA-INK RATIO
- AVOID CHART JUNK (SOMETIMES)
- LAYER INFORMATION



EDWARD TUFTE

- MAXIMIZE THE DATA DENSITY
  SHRINK THE GRAPHICS
  - MAXIMIZE THE AMOUNT OF DATA SHOWN (SOMETIMES)

### READINGS



## ACKNOWLEDGEMENTS

Slides in were inspired and adapted from slides by

- Nicolai Marquardt (University College London)
- Uta Hinrichs (University of St. Andrews)
- Saul Greenberg (University of Calgary)