Information Visualization PERCEPTION and COLOR

Petra Isenberg
tobias.isenberg@inria.fr

Let's do an experiment ...

What is Color?

= the set of perceptions elicited by the spectral distribution of light

Color Vision

- What we call color is generated by the visual brain
- There is no one to one relationship between the colors seen and wavelengths

Functions of Color Perception

Color helps us to:

- Identify things
- Classify things

Through

- Grouping
- Background segregation

How do we describe color?

Physical World \longrightarrow System
Lights, surfaces, objects

Visual

Eye, optic nerve, visual cortex

"Yellow"

Mental Models

Red, green, brown

Bright, light, dark, vivid, colorful, dull

Warm, cool, bold, blah, attractive, ugly, pleasant, jarring

Physical World \rightarrow Visual System

Retina is stimulated by three factors:

- illumination (light source)
- reflectance (from object)
- transmittance
(atmosphere)

Simple Anatomy of the Retina, Helga Kolb

Physical World \rightarrow Visual System

You do not see individual photons or light waves

- Eyes make limited measurements
- Eyes physically adapt to circumstance
- You brain adapts in various ways
- Weird stuff happens

Simple Anatomy of the Retina, Helga Kolb

Example: Lightness vs. Luminance

- LUMINANCE: an objective measurement of light intensity per unit area (e.g. cd/m2; physical)
- LIGHTNESS: a subjective impression of the intensity of light reflected from on object surface (no units; psychophysical)

Lightness experiment

The two circles are physically the same

Lightness experiment

The two circles are still physically the same, but the lightness you perceive is not

White's illusion: the opposite effect

A is surrounded by more black but seems darker than B, which is surrounded by more white

The Cornsweet Edge

As a result of two gradients, but why does this happen?

Image source: The Journal of Neuroscience, October 1, 1999, 19(19):8542-8551 An Empirical Explanation of the Cornsweet Effect.

WHAT IS GOING ON?

The Inverse Problem

- What the retina receives as input (stimulus) is a combination of photons/light waves
- From illumination sources
- From reflectance of objects
- From transmittance through objects
- How do we know who contributed what?
\rightarrow We have learned what the relationships are between the physical world and our perceived information are, to solve this problem

WHAT IS COLOR?

Some definitions

Physical measurement:
the relative intensities of wavelengths in light measured with a spectrophotometer

Psychophysical measurement:
report of the color seen by a normal subject, typically
made by comparison

Physical World - The Nature of Light

We have evolved to see a range of wavelengths: ~ 400 -700nm

Light of a single wavelength is monochromatic

What do you notice?

Monochromatic colors

Can be obtained with one or more rays of light with a single wavelength

BUT...

Light rays are typically composed of multiple wavelengths

How do we describe a beam of light?

Non-monochromatic color spectra

How do we know which color this would be?

Physically speaking

If you want to see different wavelengths at different energies across the spectrum
\rightarrow you need to have multiple photo receptors that can be compared

Trichromatic Theory

- Also called: Young-Helmholtz theory of color vision
- One of the earliest theories on how we perceive color
- Early 1800 s, Young suggested that the eye contained different photoreceptor cells that were sensitive to different wavelengths of light in the visible spectrum.
- Mid-1800s: Hermann von Helmholtz suggested that the cone receptors were:
- short-wavelength (blue),
- medium-wavelength (green),
- or long-wavelength (red).
...and the strength of the signals detected determined how the brain interpreted color in the environment.

It took about another 100 years before

CONFIRMATION IN THE BODY

Physical World \rightarrow Visual System

Rods

No color (sort of)
All over the retina
More sensitive

Cones

Three different kinds of "color receptors"
Mostly in the center
Less Sensitive

Cone response

- LMS (Long, Middle, Short) cones
- Capture different wavelengths (some better than others)
- Transmit a signal to the brain

Cone Response Curves

Cone response

A Field Guide to Digital Color, Maureen Stone

Cumulated intensities detected
S
M

L \square
SML decomposition

Visual System \rightarrow Color Models

This is the color the eye sees
This is not necessarily the color the brain sees!

HOW IS THE CAPTURED COLOR INFORMATION PROCESSED?

Color Opponency Theory

Ewald Hering 1878

Proposal:
Color experience is built from 4 primary chromatic colors Arranged in opponent pairs

Color Opponency

The experiment was taken as evidence for color opponency

- Now we know do with cells whose center of the receptive field is sensitive to green and the surround to red = color opponent cells (also exists for blue and yellow)
- (too much detail for our purposes)

HOW TO DESCRIBE COLOR PERCEPTION

Color Terms

- Hue: Color we see (red, green, blue, ...)
- Saturation: degree to which hue differs from neutral gray
- Lightness/Brightness: the intensity of a colored surface or source

Color Spaces

XYZ Color Model

- created by the International Commission on Illumination (CIE) in 1931
- Derived from color perception experiments
- Relates physical wavelengths to physiologically perceived colors in human color vision.
- Seldom used directly but acts as a basis for color descriptions and transformations

XYZ Color Model

definition of three primary colors: $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$

- color-matching functions (the numerical description of the chromatic response of the observer)
- here non-negative
- Y follows the standard human response to luminance, i.e., the Y value represents perceived brightness
- can represent all perceivable colors

Wavelength (nm)

XYZ CIE Color Space

- plotting XYZ space in 3D
- all colors that are perceivable by humans form a deformed cone
- X, Y, and Z-axes are outside this cone

CIE Chromaticity Diagram

- projection of $X Y Z$ space onto $X+Y+Z=1$ (to factor out a color's brightness):

$$
x=X /(X+Y+Z) \quad y=Y /(X+Y+Z)
$$

- monochromatic colors on curved boundary

RGB and XYZ

- RGB to XYZ conversion

RGB intensity values

Stone 2005
http://www.techmind.org/

- RGB space: distorted cube
- black: origin of XYZ and projection center
- RGB projected to triangle

Can RGB Represent All Visible Colors?

- no, because all colors form horseshoe shape in CIE chromaticity diagram and RGB gamut is triangular

- But my shiny new 30 " UHD OLED is state-of-the-art, it can surely show all colors!"
- \rightarrow Let's see a color that it cannot show ...

Let's see REAL cyan ...

THE STRANGE WAYS WE EXPERIENCE COLOR...

Color Perception \rightarrow Color Naming

What "dellorvis this?

Color Perception \rightarrow Color Naming

What c"Blare"ls this?

Color Perception \rightarrow Color Naming

What "Codor ?’"s this?
"Turquoise ?" "Blue-Green ?" "Sarcelle ?"

Color according to gender?

Color names if you're a girl...

Color names if you're a guy...

Color according to XKCD

A crowdsourced color-labeling game ~5 million colors
~222,500 user sessions
http://blog.xkcd.com/2010/05/03/color-survey-results/

Color according to XKCD

Actual color names

Actual color names
if you're a girl ... if you're a guy ...

Color Naming

We associate and group colors together, often using the name we assign to the colors

Are there natural boundaries?

Basic Color Terms

- Brent Berlin \& Paul Kay 1969
- let's look at two specific places

World Color Survey

Surveyed 2616 speakers of 110 languages using 330 different color chips

Results from WCS (Mexico)

Language \#72 (Mixteco)
Mutual info $=0.942 /$ Contribution $=0.476$

Language \#98 (Tiapaneco)
Mutual info $=0.942 /$ Contribution $=0.524$

Results from WCS (South Pacific)

Language \#19 (Camsa)
Mutual info $=0.939 /$ Contribution $=0.487$

Language \#24 (Chavacano)
Mutual info $=0.939 /$ Contribution $=0.513$

But language-color interaction

- Himba tribe in Namibia - only few color words:
- zoozu: most dark colors (red, blue, green, violet)
- vapa: white, also some yellow
- borou: some green and blue colors
- dumbu: many green but also red colors

© Hans Hillewaert

But language-color interaction

- experiment: how long to find a differing color?

difficult to impossible for Himba people

But language-color interaction

- experiment: how long to find a differing color?

easy for Himba people: different words for both types of green

Universal (?) Basic Color Terms

Basic color terms recur across languages

\square White \square Red \square Pink
\square Grey \square Yellow \square Brown
Green \square Orange Blue

\square Purple

Interesting factoid: Cartographers found out that they need 4 unique hues to unambiguously distinguish all areas on an arbitrarily complex map

Evolution of Basic Color Terms

Proposed universal evolution of color names across languages.

Some other color usage problems

This one is called COLOR CONTRAST: the same spectral input can appear as a different color

Color Constancy

- Background color and lighting have a big effect on how we see color
- Two differ

@nationalgeographic.com

CONCLUSION

- Color vision (just like brightness) does not correspond to physical measurements
- Be mindful in how you apply color in your computergenerated scenes!

COLOR FOR VISUALIZATION

Why are color choices important?

Example: The Rainbow Color Scale

- Represent data by varying hue across
(approximately) the full range of visible wavelengths
- One of the most common color scales in use today

And it's (usually) a huge mistake!

General Bathymetric Chart of the Ocean
Every color mark signals: longitude, latitude, sea/land, depth/altitude

Where is the land?

 Where is the sea the deepest?
General Bathymetric Chart of the Ocean

Now describe what kind of color scale was possibly used here

Perceptual Ordering

Rainbow Color Scale

- Is ordered by wavelength
- Is not perceptually ordered

(a)

Gray Scale

- Increases luminance
(value) from dark to light
- Is perceptually ordered

Color Scale Luminance

Rainbow Color Scale

- The visual system perceives high spatial frequencies through changes in luminance
- Is isoluminant (for large portions), changes only appear at color boundaries
- Obscures small details in the data

Color Scale Transitions

Rainbow color scale

- appears separated into bands of almost constant hue
- sharp transitions between hues are perceived as sharp transitions in the data

rainbow color scale
gray scale
heated color scale
isoluminant green-red scale

HOW TO PICK COLORS

A Few General Rules

- Always have high luminance contrast between foreground and background
- Use only a few distinct colors

> 12 colors will likely not work
~ 5 colors recommended

Using Color to Label

(For groups, categories, highlights, etc.)
Colors should be distinctive and named
\square
Use cultural conventions \& appreciate symbolism

Brands
Apple
AT\&T
Home Depot
Kodak
Starbucks

Lin et al. (2013) Selecting
Semantically-Resonant Colors
for Data Visualization

Beware of bad interactions

CONTRAST

You can make this work if you consider value

Using Color for Scales
 (For ordinal or quantitative data)

Use a scale that varies lightness in addition to color Shades of gray or shades of a single color are easiest

For diverging scales, use a lighter, desaturated value for the critical mid-point and darker hues for the ends

ColorBrewer

number of data classes on your map

```
3 | learn more >
```


Highly recommended!

Designed originally for maps but will also work well for other types of visualizations
http://colorbrewer2.org/

http://colorbrewer2.org/

ColorBrewer

(RGB)

Every ColorBrewer Scale

For CSS and JavaScript (by Mike Bostock) http://bl.ocks.org/mbostock/5577023
7% of the viewers may not see anything if you use red-green, ONE WARNING ABOUT RED-GREEN

Color Vision Deficiency

vormal color vision

simulation of color contrast for deuteranopic color vision (green receptors absent)
approx. 7\% of male population color-deficient
mostly red-green color deficiency (deuteranopia or protanopia) - but other forms exist as well

Color Deficiency Test (Ishihara Test)

Color Deficiency Test

Examples from VIS/InfoVis 2004

Better: Red-Blue Contrast

Check Your Visualizations!

When possible, avoid red-green color contrasts for visualization purposes.

To test your visualizations, use proofing modes in PhotoShop and GIMP, or try VisCheck
http://www.vischeck.com/

Color Resources

Maureen Stone's Resources
 A Field Guide to Digital Color http://www.stonesc.com

Cindy Brewer's ColorBrewer http://colorbrewer2.org For CSS and JavaScript http://bl.ocks.org/mbostock/5577023

Community Palette Sharing http://www.colourlovers.com http://kuler.adobe.com

(Fun) Color Resources!

Wired "The Crayola-fication of the World"

by Aatish Bhatia
http://www.wired.com/wiredscience/2012/06/the-crayola-fication-of-the-world-how-we-gave-colors-names-and-it-messed-with-our-brains-part-i/

RadioLab "Colors"
 WNYC Podcast

http://www.radiolab.org/story/211119-colors/

PERCEPTION OF OTHER VISUAL ENCODINGS

Perception of Visual Encodings

There are lots of possible visual encodings

Their effectiveness is related to how they are handled by our perceptual system

Elementary Graphical Perception Tasks

William S. Cleveland (1980s)

Figure 3. Graphs from position-angle experiment.

Performed controlled experiments to determine how effectively people could judge changes in visual features

Focus on quantitative information

Variables used: angle, area (size), color hue, color saturation, density (value), length, position, slope, volume

Elementary Graphical Perception Tasks

William S. Cleveland (1980s)

More accurate

Color Value

What percentage in value is the right from the left?

66\%

Color Value

- What percentage in value is the right from the left?

100\%
60\%

Area
 What percentage in size is the right from the left?

100\%
52%

Area
 What percentage in size is the right from the left?

Volume

What percentage in size is the right from the left?

Why are people so bad at this?

Relationship between stimulus and perception isn't always linear!

Stevens' power law describes a relationship between a physical stimulus (S) and its perceived intensity or strength (P)

Perception

People tend to correctly estimate lengths They tend to underestimate areas and volumes.

When asked to pick a circle 2 times the size, people tend to pick a circle ~1.8 times larger.

This tendency gets worse as area grows.

Volume is even worse!

FIGURE 7.4. An eye-catching map created using three-dimensional geometric symbols. (After Smith, 1928. First published in The Geographical Review, 18(3), plate 4. Reprinted with permission of the American Geographical Society.)

[Cartography: Thematic Map Design, Figure 8.6, p. 170, Dent, 96] $\mathbf{S}=0.98 \mathbf{A}^{0.87}$ [from Flannery 71]

Area

- What percentage in size is the red from the blue ($=100 \%$)?

Company Performance

Length

What percentage in length is the right from the left?

100\%

75\%

Length / Position

What percentage in length is the right from the left?

100\%

25\%

Effectiveness of Data Encodings (Conjecture)

Quantitative

Position	Position	Position
Length	Density	Color Hue
Angle	Color Satura	Textu
Slope	Color Hue	onne
Area	Texture	Cont
Volume	Connection	Density
Density	Containment	Color Saturation
Color Saturation	Length	Shape
Color Hue	Angle	Length
Texture	Slope	Angle
Connection	Area	Slope
Containment	Volume	析
Shape	Shap	Volume

Θ Magnitude Channels: Ordered Attributes
Position on common scale

Position on unaligned scale

Length (1D size)

Tilt/angle

Area (2D size)

Depth (3D position)

Color luminance

Color saturation

Curvature

Volume (3D size)

Spatial region

Color hue

Motion

Shape

Θ Identity Channels: Categorical Attributes

Elementary Graphical Perception Tasks

William S. Cleveland (1980s)
also beware of the physical presentation:

PREATTENTIVE PROCESSING

How many 3's do you see?

1281768756138976546984506985604982826762 9809858458224509856458945098450980943585 9091030209905959595772564675050678904567 8845789809821677654876364908560912949686

How about now?

1281768756138976546984506985604982826762 9809858458224509856458945098450980943585 9091030209905959595772564675050678904567 8845789809821677654876364908560912949686

Preattentive Processing

- Some stimuli can be perceived without the need for focused attention
- Generally within 200-250 ms
- Seems to be done in parallel by the low-level vision system

Visual encoding has a big impact on this!

Visual encodings influence preattentive processing

DETERMINE IF A RED CIRCLE IS PRESENT

Hue

Yes, can be done preattentively

Shape

Yes, can be done preattentively

Hue and Shape

Cannot be done preattentively due to the conjunction of shape and hue
\rightarrow need to search

Preattentive visual features（some）

		のวロのว？ u ロunつ u cucの ○cc～o \cdots ••・ファ closure C C		
－－－－	＿－－	－－－－hue	－－－－－	$\because \because \bullet \bullet \bullet$
	－			\bullet°
density， contrast	$\begin{aligned} & \text { number, } \\ & \text { estimation }=- \end{aligned}$		intensity＝	
－－－－－－	－－	－		
			andithoro	
flicker	direction of motion $=$ $=$		3D orientation	$\begin{aligned} & \text { artistic } \\ & \text { propeties } \end{aligned}$

From：Healey，Perception in Visualization

Preattentive visual features (some)

Preattentive visual features (some)

Applying what we know to
ASSESS VISUAL REPRESENTATIONS

Let's evaluate...

| Car / Nation | USA | Japan | Germany | France |
| :--- | :--- | :--- | :--- | :--- | Sweden | Accord | | x | |
| :--- | :--- | :--- | :--- |
| AMC Pacer | x | | |
| Audi 5000 | | x | |
| BMW 320i | | | |
| Champ | x | | x |
| Chevy Nova | x | | |
| Saab 9000 | | | |

What kind of data are we looking at?
Nations: Nominal
Cars: Nominal
(Nation,Car): Nominal

Let's evaluate...

Quantitative	Ordinal	Nominal
Position	- Position	- Position
Length	Density	- Color Hue
Angle	, Color Saturation	Texture
Slope	Color Hue	Connection
Area	, Texture	Containment
Volume	Connection	Density
Density	Containment	Color Saturation
Color Saturation	Length	Shape
Color Hue	Angle	Length
Texture	Slope	Angle
Connection	Area	Slope
Containment	Volume	Area
Shape	- Shape	Volume

Problem:

Length of bar suggests an order or quantity (e.g. Swedish cars are better)

Let’s evaluate...

Quantitative	Ordinal	Nominal
Position	- Position	- Position
Length	Density	- Color Hue
Angle	Color Saturation	Texture
Slope	, Color Hue	- Connection
Area	T Texture	Containment
Volume	1 , Connection	Density
Density	Containment	Color Saturation
Color Saturation	Length	\square Shape
Color Hue	Angle	\cdots Length
Texture	Slope	\triangle Angle
Connection	Area	Slope
Containment	Volume	Area
Shape	- Shape	Volume

Better!

Let's evaluate...

Banks: Market Cap

Market Value as of January 20 ${ }^{\text {th }} 2009$, $\$$ BnMarket Value as of Q2 2007, \$Bn

Market Capitalization =

 What would it cost to buy all of a company's stock at the current price.

Compares 15 major banks on two dates:
January 20th, 2009

- Q2 2007 (before banking crisis hit)

Problems here?

Banks: Market Cap

Market Value as of January $20^{\text {th }} 2009$, $\$ \mathrm{Bn}$
Market Value as of Q2 2007, \$Bn

We are not good at comparing areas.

 (And the areas here are actually misleading!)

Problems here?

Banks: Market Cap

We are not good at comparing areas.

 (And the areas here are actually misleading!)

$$
85 / 165=\sim 50 \%
$$

But this is actually the ratio of the radii, not the areas!

A bar chart would be better.

Problem here?

Sector Allocation of Holding			
- FINANCIALS	21.45\%	NON-CYCLICAL CONSUMER GOODS	18.09\%
- CYCLICAL SERVICES	14.17\%	INFORMATION TECHNOLOGY	13.61\%
- RESOURCES	9.61\%	- GENERAL INDUSTRIES	8.99\%
- UTILTIES	3.83\%	- BASIC INDUSTRIES	3.70\%
NON-CYCLICAL SERVICES	3.67\%	CYCLICAL CONSUMER GOODS	1.87\%

- There is likely a bug or error in the data
- Pie slices are difficult to compare by area or by angle
- Similar colors are difficult to distinguish
- Perspective distortion adds to the problem

Similarly...3D bar charts are not recommended

These are much easier to read \& compare!

Problem here?

NEWS MAGAZINE STAFF SIZE OVER TIME
Time and Newsweek select years 1983-2005

NUMBER OF CORRESPONDENTS IN BUREAUS OVER TIME
Time and Newsweek, select years 1983-2005

NEWS MAGAZINE BUREAUS OVER TIME

Length Comparison

At first glance:

- A huge overall decline
- In 2003, Newsweek is 50\% of Time
- Time

■ Newsweek

If we add a proper baseline at 0:

- The downward trend is less severe
- 2003: Newsweek is $\sim 80 \%$ of Time

Moreover...

NEWS MAGAZINE STAFF SIZE OVER TIME

Time and Newsweek select years 1983-2005

10 years each
1 year each

Redesign (by Stephen Few)

Note: A dashed line connecting two points indicates that there are years between the points for which values were not available. If the values were available, the shape of the lines might vary significantly.

NEWS MAGAZINE STAFF SIZE OVER TIME

Time and Newsweek select years 1983-2005

NUMBER OF CORRESPONDENTS IN BUREAUS OVER TIME
Time and Newsweek, select years 1983-2005

NEWS MAGAZINE BUREAUS OVER TIME

A few more (classic) guidelines!

Good reference: How to Lie with Statistics, by Darrell Huff (1954)

Chart Rules

- Provide a proper baseline

A 10\% increase. Good!

Already looks more impressive

Chart Rules

- Provide a proper baseline \& label your axes

Chart Rules

- Provide a proper baseline \& label your axes
- Avoid eye-candy

Actual data

The same data with eye-candy \& no numbers ... but at least it tells the same general story.

Impressive, but a lie!

Chart Rules

- Provide a proper baseline \& label your axes
- Avoid eye-candy
- Avoid area comparisons whenever possible

Chart Rules

- Provide a proper baseline \& label your axes
- Avoid eye-candy
- Avoid area comparisons whenever possible
- Provide legends

Chart Rules

- Provide a proper baseline \& label your axes
- Avoid eye-candy
- Avoid area comparisons whenever possible
- Provide legends
- Grids help - but make them subtle (about 20\% opacity - no black lines)

Many more useful guidelines!

Summary

Today you learned

Details about the perception of color and a few other visual variables

Saw that the vision system is quicker and better at detecting certain visual variables

Learned how to critique visualizations

Müller-Lyer Sinusoidal Waves

New variant by Gianni A. Sarcone
Though the blue and red segments seem to oscillate, they are always the same length! Nothing moves except
the arrows at the endpoints of each color segment...

© Gsencave giannisarcone.com $@(1) \oplus(\Theta)$

