INTRODUCTION

P5 \& DATA ANALYSIS

 CHALLENGEadapted from PETRA ISENBERG
INFOVIS

CODING ENVIRONMENT

p5*Js

Hello! p5.js is a JavaScript library that starts with the original goal of Processing, to make coding accessible for artists, designers, educators, and beginners, and reinterprets this for today's web.

Using the original metaphor of a software sketchbook, p5.js has a full set of drawing functionality. However, you're not limited to your drawing canvas, you can think of your whole browser page as your sketch! For this, p 5 .js has addon libraries that make it easy to interact with other HTML5 objects, including text, input, video, webcam, and sound.
p 5 .js is a new interpretation, not an emulation or port, and it is in active development. An official editing environment is coming soon, as well as many more features!

Cover

Download

Exhibition

Reference
Libraries
Tools
Environment

Tutorials
Examples
Books
Handbook

Overview
People
Shop
$»$ Forum
nGitHub

Welcome to Processing 3! Dan explains the newfeatures and changes; the links Dan mentions are on the Vimeo page.
» Download Processing
» Browse Tutorials
» Visit the Reference

Processing is a flexible software sketchbook and a language for learning how to code within the context of the visual arts. Since 2001, Processing has promoted software literacv within the visual arts and

Exhibition

Fluid Leaves
by Reinoud van Laar

cf.city flows
by Till Nagel and Christopher Pietsch

DOWNLOAD

Get your

 favorite text editorOn windows, e.g. Notepad++
(online editor
https://editor.p5js.org/)
p5.js

Home Download
Download
Start Complete Library

P5 COMPLETE

- Extract into a folder
- Copy the empty example
- Rename the empty example to something useful, e.g. "first-example"

```
addons
    empty-example
    tutorial-example
    .DS_Store
塐 p5.js
夌 p5.min.js
```

19/11/2017 22:21
19/11/2017 22:21
19/11/2017 22:22
19/11/2017 22:21
19/11/2017 22:21
19/11/2017 22:21

File folder
File folder
File folder
DS_STORE File
JavaScript File
JavaScript File

7 KB
2.500 KB
1.159 KB

OPTIONAL

- Notepad ++ File -> Open folder as workspace
- Sublime Text File => Open the directory

START

\triangle D:\GoogleDrive\Teaching\VisualAnalytics Class\2017\Tutorials\P5\p5\tutorial-example\sketch.js - Notepad++
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ?

Folder as Workspace
ㅊ

표 addons
\# ${ }^{-1}$ empty-example
\# F tutorial-example
且 .DS_Store
p5.js
p5.min.js
index.html $\mathbf{\square}$ sketch.js $\mathbf{\square}$

```
function setup().{
2 ..//.put.setup\cdotcode.here
    }
    =function draw().{
        ..//.put.drawing.code.here
    }
```


DRAW AN ELLIPSE

OPEN FILES
$*$ sketch.js
index.html
FOLDERS
∇ first-example
index.html
sketch.js

- look at index.html in your browser

MORE INTERESTING

MORE INTERESTING

P5 MORE

Many more functions to:

- draw
- interact
- manage data (back-end) https://p5js.org/reference/ and libraries:
https://p5js.org/libraries/

DATA ANALYSIS

Challenge

BIBLIOMETRICS

Study of measuring and analysing science, technology and innovation

BIBLIOMETRICS

the application of mathematical and statistical methods to books and other media of communication (Pritchard, 1969)

Scientometrics: the science of measuring and analyzing science

to understand science

http://wbpaley.com/brad/mapOfScience/

WHY?

- to understand science
- to manage science / research
- ranking of scholarly output of researchers / institutions
- identifying the centers of excellence

WHY IMPORTANT?

- Globalization of research
- Availability of large databases
- Increased research output \rightarrow need for awareness
- Quickly evolving research fields

HOW WILL WE ANALYZE SCIENCE?

- through the study of scientific publications
- in the domains of Visual Analytics and Visualization
- by building our own tools

SCIENTIFIC PUBLICATIONS

Why are they there?

1. Sharing scientific results/methods/processes
2. To show research performance
3. To allow validation of findings
4. To gain prestige and recognition

PUBLICATION VENUES

Conferences vs. Journals

- journals typical publication venues in most sciences
- in computer science (some) conference publications are highly regarded (with acceptance rates <25\%)

RESEARCH QUESTIONS

- Simple \& boring
- Numbers of papers at IEEE VIS 2015
- Boring
- Numbers of papers by P. Isenberg in 2015 or A. Bezerianos in 2018
- Interesting (unfortunately not simple)
- In the domain of visual analytics growing or shrinking?
- Are visual analytics and visualization the same community?
- Are research interests of specific researchers changing?
- What are new research trends in visual analytics?
- To which university should I go to do a PhD in visual analytics?
- Who are good reviewers for a certain topic?
- Who should be in the program committee of VAST / VIS 2020?
- How does a change in affiliation impact a researcher's interests?
- I there a relation between affiliation and citations?

DATA SET

13 columns, >2800 rows

Confer ence	Year		Paper Title	Paper DOI	Link	First page	$\begin{aligned} & \text { Last } \\ & \text { page } \end{aligned}$	Paper type: $\mathrm{C}=$ conference paper, J = joumal paper, M=miscellane ous (capstone, keynote, VAST challenge, panel, poster, ...)	Abstract	Author Names	Author Affliation	References	Author Keywords
Vis		2000	Topology pre	nc 10. 1109/VISUAL2000.885703	http://dx. doi. oro/ 10	259	266	C	Multiresolu	homas Gerstr	Dept. of Appl. Ma	0.1109/VISUAL.1996.56812	tetrahedral grid ref
Vis		2000	Isosurfacing	Ig 10.1109/VISUAL2000.885704	http://dx. doi. ora/ 10	267	273		Visualizatio	Praveen Bhanira	Silicon Graphics C	10.1109/VISUAL.1992.235222;	
Vis		2000	Semi-regular	' 10.1109 VISUAL2000.885705	hitp://dx. doi. ord 10.	275	282	C	We preser	Zoë J. Wood;Peter	California Inst. of Te	10.1109/VISUAL.2000.885703	Semi-regular meshes,
Vis		2000	Scanline suff	g: 10.1109/VISUAL2000.885706	hitp://dx. doi. ora/10.	283	289		A standard	David M. Weinst	Sch. of Comput., U	10.1109/VISUAL.1997.663887;	1 separating surfaces,
Vis		2000	Navigating hi	10.1109/VISUAL2000.885707	hitp://dx. doi. ora/ 10.	291	296	C	Throughour	Helen Wright;ker	, Dept. of Comput. S	10.1109/VISUAL.1999.809921;	${ }_{1}$ Computational steeri
Vis		2000	Visualization	Mu 10.1109/VISUAL2000.885708	http://dx. doi. oro/ 10	297	302		Multi-dime	R. R. Johnson	Dept. of Comput. S	Salt Lake City, UT, USA\|cl	Multidimensional Vis
Vis		2000	Real-world re	ty 10.1109/VISUAL2000.885709	http://dx. doi. oro/ 10.	303	310		This paper	Daniel Weiskopf;	Inst. of Astron. \& A	10.1109/VISUAL.1990.146368	image-based renderir
Vis		2000	Visualizing 9	10.1109/VISUAL2000.885710	hitp://dx. doi. oro/ 10.	311	318	C	One of the	Ingrid Hotz;Hans	Dept. of Comput. S	10.1109/VISUAL.1992.235196	geodesics, visualize
Vis		2000	Geometric co	e: 10.1109/VISUAL2000.885711	http://dx. doi. ora/ 10.	319	326		The compr	Olivier Devillers;	Inst. Nat. de Rech	10.1109/VISUAL.1997.663902;	geometry, compressic
Vis		2000	Toward a con	in 10.1109/VISUAL2000.885712	nttp://dx. doi. oro/ 10.	327	333		In 1998 we	Wei-Chao Chen:	Dept. of Comput.	10.1109/VISUAL.1996.56812	telepresence, tele-i.

http://www.vispubdata.org/

CONFERENCE

$\{$ InfoVis, Vis, SciVis, VAST\}

YEAR

\{1990-2015\}

Exploring the Placement and Design of Word-Scale Visualizations

Pascal Goffin, Wesley Willett, Jean-Daniel Fekete Senior Member, IEEE and Petra Isenberg

Abstract

We present an exploration and a design space that characterize the usage and placement of word-scale visualizations within text documents. Word-scale visualizations are a more general version of sparklines-small, word-sized data graphics that allow meta-information to be visually presented in-line with document text. In accordance with Edward Tufte's definition, sparklines are traditionally placed directly before or after words in the text. We describe alternative placements that permit a wider range of word-scale graphics and more flexible integration with text layouts. These alternative placements include positioning visualizations between lines, within additional vertical and horizontal space in the document, and as interactive overlays on top of the text. Each strategy changes the dimensions of the space available to display the visualizations, as well as the degree to which the text must be adjusted or reflowed to accommodate them. We provide an illustrated design space of placement options for word-scale visualizations and identify six important variables that control the placement of the graphics and the level of disruption of the source text. We also contribute a quantitative analysis that highlights the effect of different placements on readability and text disruption. Finally, we use this analysis to propose guidelines to support the design and placement of word-scale visualizations.

Index Terms-Information visualization, text visualization, sparklines, glyphs, design space, word-scale visualizations

1 Introduction

Small high-resolution data graphics, included alongside words or word sequences in text documents, can often communicate information that could not be succinctly conveyed by the text itself. Examples include small stock charts embedded next to the name of a company, game statistics next to the name of a soccer team, or weather trends next to
alization's maximum height to that of the font-making visualizations hard to read when small font sizes were chosen. In-line visualizations can also disrupt sentences, making the text more difficult to read.

To better understand the options available for integrating word-scale visualizations in text documents, we outline a design space of possible placements relative to the text. In doing so, we relax some aspects of Tufte's orioinal snarkline definition imnosino lese restrictive size

PAPER DOI

- A persistent identifier used to uniquely identify objects.
- Particularly used for electronic documents such as journal articles.
10.1109/TVCG.2015.2467471
= your unique key to each paper in the database

LINK

- A link to the digital library of the publisher of the paper
- The paper can be read/bought here

Browse Journals \& Magazines > IEEE Transactions on Visualiz.. > Volume: 22 Issue: 1 ?
A comparative study between RadViz and Star Coordinates

4
Author(s)

Manuel Rubio-Sánchez; \vee Laura Raya $; \vee$ Francisco Diaz; \vee Alberto Sanchez

Related Articles

Scale
Designing pixel-oriented visualization techniques: theory and applications

Human factors in visualization research

Abstract	Authors	Figures	References	Citations	Keywords	Metrics	Media

Abstract:
RadViz and star coordinates are two of the most popular projection-based multivariate visualization techniques that arrange variables in radial layouts.

FIRST PAGE - LAST PAGE

- can be used to deduce page count
- likely not clean data

PAPER TYPE

- J = Journal
- the most prestigious type
- a full scientific paper (8-10 pages usually)
- $\mathrm{C}=$ Conference
- a full scientific paper (8-10 pages usually)
- $\mathrm{M}=$ Miscellaneous
- a poster (2 pages)
- a talk abstract (1-2 pages)
- NOT a full paper

a short summary of the paper content

Exploring the Placement and Design of Word-Scale Visualizations

Pascal Goffin, Wesley Willett, Jean-Daniel Fekete Senior Member, IEEE and Petra Isenberg

Abstract

We present an exploration and a design space that characterize the usage and placement of word-scale visualizations within text documents. Word-scale visualizations are a more general version of sparklines-small, word-sized data graphics that allow meta-information to be visually presented in-line with document text. In accordance with Edward Tufte's definition, sparklines are traditionally placed directly before or after words in the text. We describe alternative placements that permit a wider range of word-scale graphics and more flexible integration with text layouts. These alternative placements include positioning visualizations between lines, within additional vertical and horizontal space in the document, and as interactive overlays on top of the text. Each strategy changes the dimensions of the space available to display the visualizations, as well as the degree to which the text must be adjusted or reflowed to accommodate them. We provide an illustrated design space of placement options for word-scale visualizations and identify six important variables that control the placement of the graphics and the level of disruption of the source text. We also contribute a quantitative analysis that highlights the effect of different placements on readability and text disruption. Finally, we use this analysis to propose guidelines to support the design and placement of word-scale visualizations. Index Terms-Information visualization, text visualization, sparklines, glyphs, design space, word-scale visualizations

AUTHORS

- Firstname Lastname
- Separated by ;
- First author often the project lead
- Last author often the advisor

Exploring the Placement and Design of Word-Scale Visualizations
Pascal Goffin, Wesley Willett, Jean-Daniel Fekete Senior Member, IEEE and Petra Isenberg

Abstract-We present an exploration and a design space that characterize the usage and placement of word-scale visualizations within text documents. Word-scale visualizations are a more general version of sparklines-small, word-sized data graphics that allow meta-information to be visually presented in-line with document text. In accordance with Edward Tufte's definition, sparklines are traditionally placed directly before or after words in the text. We describe alternative placements that permit a wider range of

AUTHOR KEYWORDS

- added by the authors to a paper
- think of as tags describing the content

Exploring the Placement and Design of Word-Scale Visualizations

Pascal Goffin, Wesley Willett, Jean-Daniel Fekete Senior Member, IEEE and Petra Isenberg

Abstract

We present an exploration and a design space that characterize the usage and placement of word-scale visualizations within text documents. Word-scale visualizations are a more general version of sparklines-small, word-sized data graphics that allow meta-information to be visually presented in-line with document text. In accordance with Edward Tufte's definition, sparklines are traditionally placed directly before or after words in the text. We describe alternative placements that permit a wider range of word-scale graphics and more flexible integration with text layouts. These alternative placements include positioning visualizations between lines, within additional vertical and horizontal space in the document, and as interactive overlays on top of the text. Each strategy changes the dimensions of the space available to display the visualizations, as well as the degree to which the text must be adjusted or reflowed to accommodate them. We provide an illustrated design space of placement options for word-scale visualizations and identify six important variables that control the placement of the graphics and the level of disruption of the source text. We also contribute a quantitative analysis that highlights the effect of different placements on readability and text disruption. Finally, we use this analysis to propose guidelines to support the design and placement of word-scale visualizations.

Index Terms-Information visualization, text visualization, sparklines, glyphs, design space, word-scale visualizations

REFERENCE

- which other VIS paper is cited from this particular paper
- based on DOI and separated by ;
10.1109/VAST.2010.5652433;10.1109/INFVIS. 1998.729559;10.1109/VISUAL.
1997.663916;10.1109/TVCG.2013.182;10.1109/ TVCG.2014.2346258;10.1109/TVCG.2008.173

References
[1] A. Abdul-Rahman, J. Lein, K. Coles, E. Maguire, M. Meyer, M. Wynne,
C. R. Johnson, A. Trefethen, and M. Chen. Rule-based visual mappings C. R. Johnson, A. Trefethen, and M. Chen. Rule-based visual mappings-
with a case study on poetry visualization. Computer Graphics Forum, 32(3):381-390, 2013.
[2] E. Bertini, M. Rigamonti, and D. Lalanne. Extended excentric labeling. Computer Graphics Forum, 28(3):927-934, 2009
[3] S. Bird, E. Klein, and E. Loper. Natural Language Processing with
[4] R. Borgo, J. Kehrer, D. H. Chung, E. Maguire, R. S. Laramee, H. Hauser M. Ward, and M. Chen. Glyph-based visualization: Foundations, design guidelines, techniques and applications. In Eurographics 2013 -State of [5] M. Bostock, V. Ogievetsky, and I. Heer D ${ }^{3}$ datis Association, 2012. [5] M. Bostock, V. Ogievetsky, and J. Heer. D ${ }^{3}$ data-driven documents IEEE
Transactions on Visualization and Computer Graphics, 17(12):23012309, 2011. . 171 B.W. Whang I. D. Mackinlay P. T. Zell B.-W. Chang, J. D. Mackinlay, P. T. Zellweger, and T. Igarashi. A ne-
gotiation architecture for fluid documents. In Proceedings of the Confer ence on User Interface Soffware and Technology (UIST), pages 123-132. ACM, 1998.
[8] W. S. Cleveland, M. E. McGill, and R. McGill. The shape parameter of a two-variable graph. Mournal of the American Statistical Association, 9-300, 1988
haviour \& Information Technology, 23(6):377-393, 20
10] J.-D. Fekete and C. Plaisant. Excentric labeling. Dynamic neighborh labeling for data visualization. In Proceedings of the Conference on Human Facors in Compuing Systems (CHI), pages 512-519. ACM, 1999.
business_intell gence/time_on_the horizon. pdf.
[12] J. Fuchs, F. Fischer, F. Mansmann, E. Bertini, and P. Isenberg. Evaluation of alternative glyph designs for time series data in a small multiple setSystems (CHI), pages 3237-3246. ACM, 2013.
[13] P. Goffin, W. Willett, J.-D. Fekete, and P. Isenberg. Sparklificator, Last read: June 2014. http://inria.github.io/
sparklificator/.
[14] B. Greenhill, M. Ward, and A. Sacks. The separation plot A new visual method for evaluating the fit of binary models. American Journal of Political Science, 55(4):991-1002, 2011.
15] J. Heer and M. Agrawala. Multi-scale banking to 45 degrees. IEEE
Transactions on Visualization and Compuer Graphics, 12(5):701-708, ${ }_{2}^{\text {Transac }} 2$
16] J. Heer, N. Kong, and M. Agrawala Sizing the horizon: The effects of izations. In Proceedings of graphical perception of time series visualpuing Systems (CHI), pages 1303-1312. ACM, 2009 .
[17] M. R. Jakobsen and K. Hornbæk. Transient visualizations. In Proceed-

69.76 ACM 2007

[18] B. Lee, N. H. Riche, A. K. Karison, and S. Carpendale, SparkCloud Computer Graphics, 16(6):1182-1189, 2010 .
[19] J. Pearson, G. Buch digital documents. In Research and Advanced Tectnology for Digitel C. Perin, R Vages 429-432. Springer, 2009. visual soccer analysis. IEEE Transactions on Visualization and Computer Graphics, 19(12): 2506-2515, 2013.
1] P. Pirolli and S. Card. Information foraging. Psychological Review, 1999
Workshop From Theory to Pracice: Design, Vision and Visualization Exended Abstracts of IEEE VisWeek. Citeseer, 2 2008.
[23] T. Ropinski, S. Oeltre, and B. Preim. Survey of glyph-based visualizatio techniques for spatial multivariate medical data. Computers \& Graphics
$35(2): 392-401,2011$. T. Saito, H. N. Miy
T. Kaseda. Two-tone pseudo coloring: Compact visualization for onedimensional data In Proceedings of the Conference on Information Visualization (InfoVis), pages 173-180. IEEE, 2005.
H.-J. Schulz, T. Nocke, M. Heitler, and H. Schumann. A design space of visualiz. $19(12) \cdot 2366$-2375, 2013
[26] M. Steinberger, M. Waldner, M. Streit, A. Lex, and D. Schmalstieg. Context-preserving visual links. IEEE Transactions on Visualization and
Compuer Graphics, 17(12):2249-2258, 2011.
Computer Graphics, 17(12):2249-2258, 2011.
M. Stone. In color perception, size matters. IEEE Computer Graphics
and Applications, 32(2):8-13, 2012.
[28] J. Talbot, J. Gerth, and P. Hanrahan. An empinical moder of slope raph
comparisons. IEEE Transactions on Visualization and Computer Graph
[29] E. R. Tufte. Emvisioning Information. Graphics Press, Cheshire, CT
[30] E. R. Tufte. Beauififul Evidence. Graphics Press, Cheshire, CT, 2006 [31] M. O. Ward. A taxonomy of glyph placement strategies for multidi[32) 2002.
W. Willett, J. Heer, and M. Agrawala. Scented widgets: Improving navigation cues with embedded visualizations. IEEE Transac
ization and Computer Graphics, 13(6):1129-1136, 2007.
33] D. Yoon, N. Chen, and F Guimbretiere. TextTearing: Opening white space for digital ink annotation. In Proceedings of the Conference o
eger, S. H. Regli, J. D. Mackinlay, and B. W. Chang. The impact of fluid documents on reading and browsing: An observational study. In Proceedings of the Conference on Human Factors in Computing

RESEARCH QUESTIONS

What can we do with this data?

WHAT WE WILL BE BUILDING TODAY

||||||||||||||||||

||||||||||||||||||

(|l|||l||l|l|

|||||||||||||||||||||||||||||||||||||
 ||||||||||||||||||||||||||||||||||

 || |||

|||
$|||\mid$ ||| ||
 $|||\mid$ |||||||||||||||||||||||||||||||||

DATA \& LIBRARIES FOLDERS

Name

Name

- Copy data file into data folder
- Copy p5-min.js into libraries folder
- If you want to use chrome, start a webserver
- E.g. python -m http.server (python 3)

HTML FILE

<!DOCTYPE html>

<html lang="">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>p5.js example</title>
<style> body \{padding: 0; margin: 0;\} </style>
<script src="../p5.min.js"> </style>
<script src="../addons/p5.dom.min.js"> </style>
<script src="../addons/p5.sound.min.js"> </style>
<script src="sketch.js"> </style>

This is how you load .js libraries (have a libraries/ folder)
</head>
<body>
</body>
</html>
```
var w = 1200;
var h = 700;
function setup() {
    createCanvas(w, h);
    noLoop(); // draw executed only once
    background (255,204,0);
}
function draw() {
}
```

Ctrl+Shift+R for reloading a refreshed js

```
var w = 1200;
var h = 700;
function preload() {
    table = loadTable("data/IEEE VIS papers 1990-2016 - Main dataset.csv", "csv", "header");
}
function setup() {
    createCanvas(w, h);
    noLoop(); // draw executed only once
    background (255,204,0);
    console.log(table.getRowCount() + " total rows in table");
    console.log(table.getColumnCount() + " total cols in table");
}
function draw() {
}
```

```
function draw() {
    var spacing = 10;
    var x = 0;
    var y = 5;
    var length = 10;
    var lineheight = 20;
    for (var i = 0; i < table.getRowCount(); ++i){
    x = x + spacing;
        if (x > w - spacing){
            x = x%w + spacing;
            y = y + lineheight + 5;
        }
        line (x, y, x, y+lineheight);
    }
}
```

var $w=1200 ;$
var h = 700;
var table;
var yearCol;
var conferenceCol;
var minYear;
var maxYear;

keep a few variables

 for storing information on both drawing and datavar minWidth $=1$;
var maxWidth $=5$;
var fills $=[50,100,150,200] ;$
var conferences = ["InfoVis", "SciVis", "VAST", "Vis"];

```
function setup() {
    createCanvas(w, h);
    noLoop(); // draw executed only once
    background (255,204,0);
    console.log(table.getRowCount() + " total rows in table");
    console.log(table.getColumnCount() + " total cols in table");
    yearCol = table.getColumn("Year");
    minYear = min(yearCol);
    read the year column and find
    maxYear = max(yerCol);
    min and max year
    minWidth = 1;
    maxWidth = 5;
}
```

```
function draw() {
    var spacing = 10;
    var x = 0;
    var y = 5;
    var length = 10;
    var lineheight = 20;
    for (var i = 0; i < table.getRowCount(); ++i){
        x = x + spacing;
        if (x > w - spacing){
            x = x%w + spacing;
            y = y + lineheight + 5;
        }
        for each paper draw width
        depending on year
    (notice the map function)
        currentYear = yearCol[i];
        currentWidth = map(currentYear,minYear,maxYear, minWidth, maxWidth);
        strokeWeight(currentWidth);
        line (x, y, x, y+lineheight);
    }
}
```

```
function setup() {
    createCanvas(w, h);
    noLoop(); // draw executed only once
    background (255,204,0);
    console.log(table.getRowCount() + " total rows in table");
    console.log(table.getColumnCount() + " total cols in table");
    yearCol = table.getColumn("Year");
    minYear = min(yearCol);
    maxYear = max(yerCol);
    minWidth = 1;
    maxWidth = 5;
conferenceCol = table.getColumn("Conference");
}
```

```
function draw() {
for (var i = 0; i < table.getRowCount(); ++i){
    x = x + spacing;
    if (x > w - spacing){
        x = x%w + spacing;
        y = y + lineheight + 5;
    }
    currentYear = yearCol[i];
    currentWidth = map(currentYear,minYear,maxYear, minWidth, maxWidth);
    strokeWeight(currentWidth);
    conf = conferenceCol[i];
    index = conferences.indexOf(conf);
    strokeColor = fills[index]; // stroke with 1 parameter is grayscale
    stroke(strokeColor);
    line (x, y, x, y+lineheight);
}
```


LIBRARIES

- there are many drawing + animation functions in P5, as well libraries (including visualization libraries for maps, graphs, etc.)

