INFORMATION VISUALIZATION

Introduction

Petra Isenberg, Anastasia Bezerianos petra.isenberg@inria.fr anastasia.bezerianos@Iri.fr

INSTRUCTORS

P. ISENBERG, A. BEZERIANOS petra.isenberg@inria.fr

OFFICE — Digiteo Moulon Building

OFFICE HOURS — By appointment

YOU!

QUICK INTROS

Any particular interests?

COURSE INFO

VisualizationExamNovember - JanuaryTBD

Class website:

See Slack channel – everyone will get an invite

READINGS

mostly for additional interest

will announce readings on a per-lecture basis

ELECTRONICS POLICY

Laptops and devices okay (in fact you'll need them) ...but use them for work!

BEHAVIOR & SOCIETY

Students are Better Off without a Laptop in the Classroom

What do you think they'll actually use it for?

By Cindi May on July 11, 2017

Credit: Getty Images

As recent high school graduates prepare for their migration to college in the fall, one item is sure to top most students' shopping wish lists: a laptop computer. Laptops are ubiquitous on university campuses, and are viewed by most students as absolute must-have items, right alongside laundry detergent, towels, and coffee pots.

Without question, personal laptops can enhance the college experience by facilitating engagement with online course material, providing access to sources for research, maximizing internship searches, and even improving communication with friends and parents. Many students also opt to bring their laptops to class so that they can take notes, view online lecture slides, and search the web for course-related material. This practice, it

LATEST NEWS

Puerto Rico Looks to Alphabet's X Project Loon Balloons to Restore Cell

The Ethical Minefields of Technology

Astronomers Are Finally Mapping the "Dark Side" of the Milky Way

GRADING SCHEME

- Assignments: 66%
 - check the website for due dates of assignments and how to submit them
 - Slack participation
- Exam: 33%

web https://www.aviz.fr/Teaching2018/InteractiveInfoVis
(stuff to download for each class)
don't forget to contact Petra for **Slack** invites!

PROJECT

real data providers bring their data they want/need to explore

you work on a real problem with real data see the reality of data visualization challenges make an impact

EXERCISES

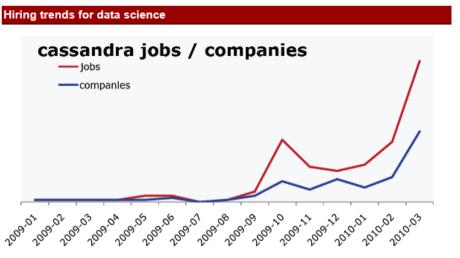
3-4 exercises

1 (individual) with curated data several (group) building towards your project

DATAFAIR

(before next class)early next week we'll be given a linkto brief data descriptions (data-briefs)consider a few you find interesting)

next class (29/11) we meet at building **660** (room TBD) elevator speech by data providers "speed data-dating" form groups and talk more with providers


AFTER TODAY YOU WILL...

have gained an overview of the research area

learned basic principles of data representation and interaction

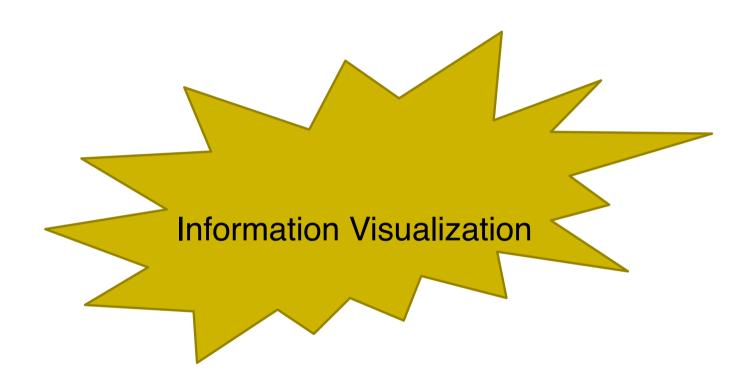
Why

INFORMATION VISUALIZATION

It's not easy to get a handle on jobs in data science. However, data from O'Reilly Research shows a steady year-over-year increase in Hadoop and Cassandra job listings, which are good proxies for the "data science" market as a whole. This graph shows the increase in Cassandra jobs, and the companies listing Cassandra positions, over time.

"The ability to take data -- to be able to understand it, to process it, to extract value from it, to visualize it, to communicate it - that's going to be a hugely important skill in the next decades."

Hal Varian, chief economist at Google


QUESTION

how can we effectively access data?

- understand its structure?
- make comparisons?
- make decisions?
- gain new knowledge?
- convince others?

-...

MANY POSSIBLE WAYS TO ADDRESS...

EXAMPLE

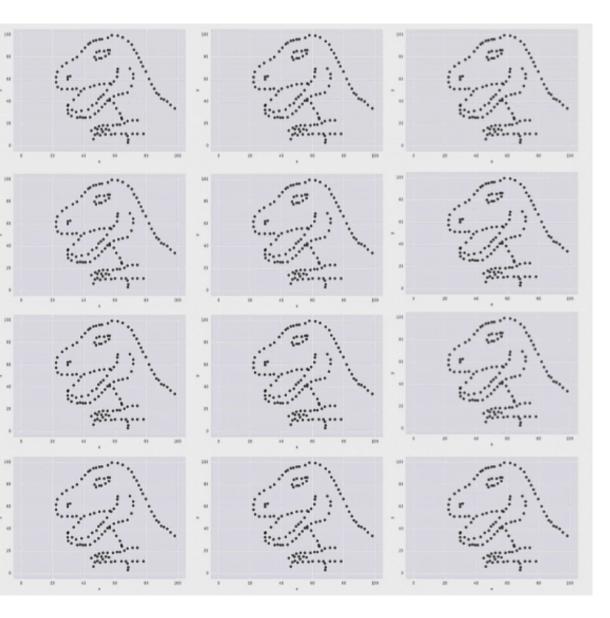
1		II		Ш		IV	
х	у	x	у	x	у	x	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

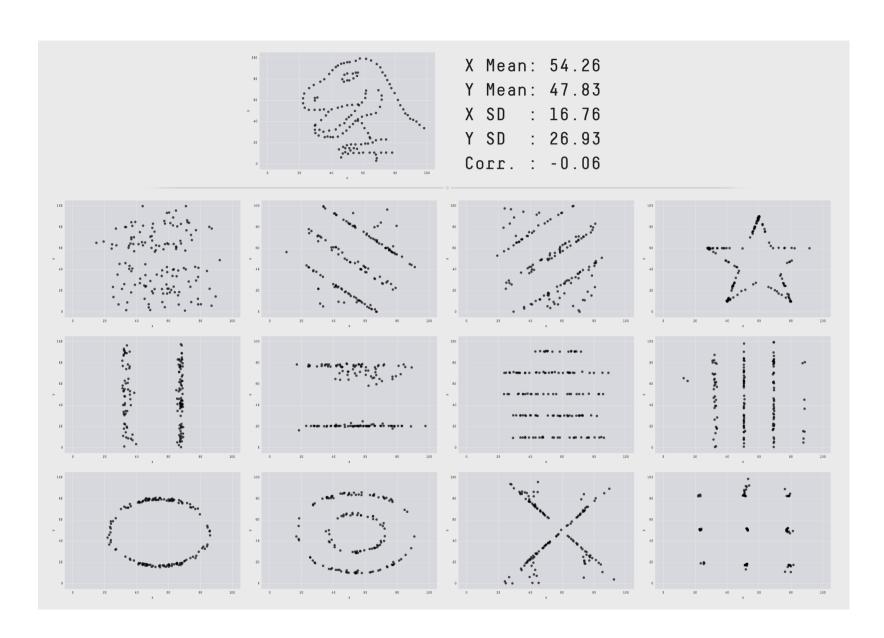
Raw Data from Anscombe's Quartet

[Source: Anscombe's quartet, Wikipedia]

STATISTICAL ANALYSIS

For all four columns, the statistics are identical

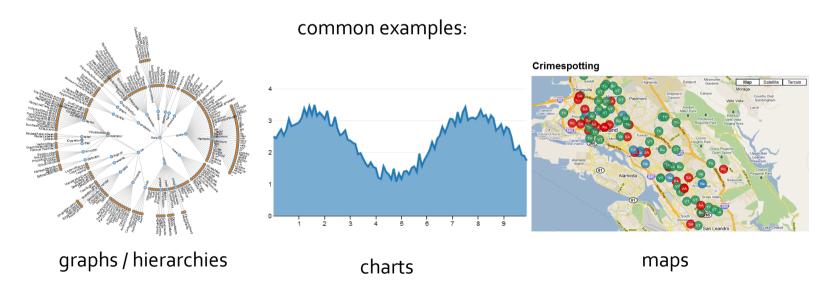

	l	II		III		IV	
x	у	х	у	х у		x	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	13.0 12.74		7.71
9.0	8.81	9.0	8.77	9.0 7.11		8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	6 14.0 8.10		14.0	8.84	8.0	7.04
6.0	7.24 6.0 6.13		6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	4 12.0 9.13		12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.68 5.0 4.74		5.0	5.73	8.0	6.89


Mean of x	9.0
Variance of <i>x</i>	11.0
Mean of y	7.5
Variance of <i>y</i>	4.12
Correlation between x and y	0.816
Linear regression line	y = 3 + 0.5x

VISUAL REPRESENTATION OF THE DATA

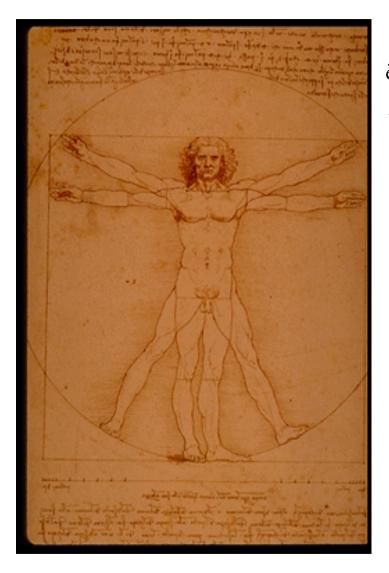
Visual representation reveals a different story

								12 -
	l II		III		IV		10 -	
x	у	х	у	х	у	х	у	7 8 - 7 8 -
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58	6-
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76	4-
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71	
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84	4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18 x1 x2
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47	\frac{1}{2}
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04	
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25	12 -
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50	10 -
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56	£ 8-
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91	6-
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89	4
								4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
								x3 x4



https://www.autodeskresearch.com/publications/samestats CHI-2017

Why visual data representations?


Vision is our most dominant sense
We are very good at recognizing visual patterns
We need to see and understand in order to explain,
reason, and make decisions

all examples from: http://vis.stanford.edu/protovis/

Other benefits of visualization

expand human working memory offload cognitive resources to the visual system, reduce search by representing a large amount of data in a small space, enhance the recognition of patterns by making them visually explicit aid monitoring of a large number of potential events provides a manipulable medium & allows exploration of a space of parameter values.

L'occhio, che si dice finestra dell'anima, è la principale via donde il comune senso può piú copiosamente e magnificamente considerare le infinite opere di natura.

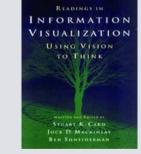
> Leonardo da Vinci (1452 - 1519)

The eye...
the window of the soul,
is the principal means
by which the central sense
can most completely and
abundantly appreciate
the infinite works of nature.

百 間 不如 一 見

"One hundred rumors are not comparable to one look."

An Old Chinese Inscription


Information visualization

Create visual representation
Concentrates on abstract data
Includes interaction

Official Definition:

The use of computer-supported, interactive, visual representations of abstract data to amplify cognition.

[Card et al., 1999]

Functions of Visualizations

Recording information

Tables, blueprints, satellite images

Processing information

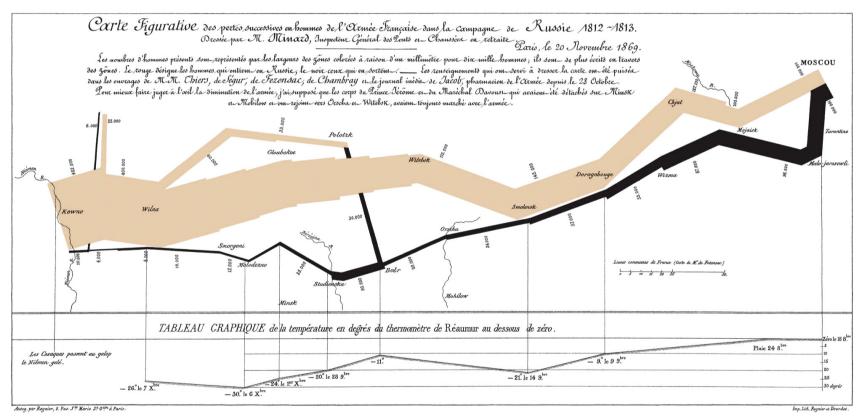
needs feedback and interaction

Presenting information

share, collaborate, revise for oneself, for one's peers and to teach

Seeing the unseen

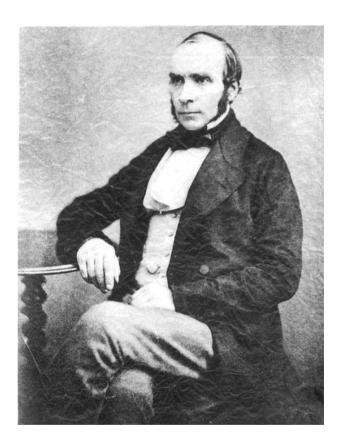
Visualization of abstract data has been practiced for hundreds of years...

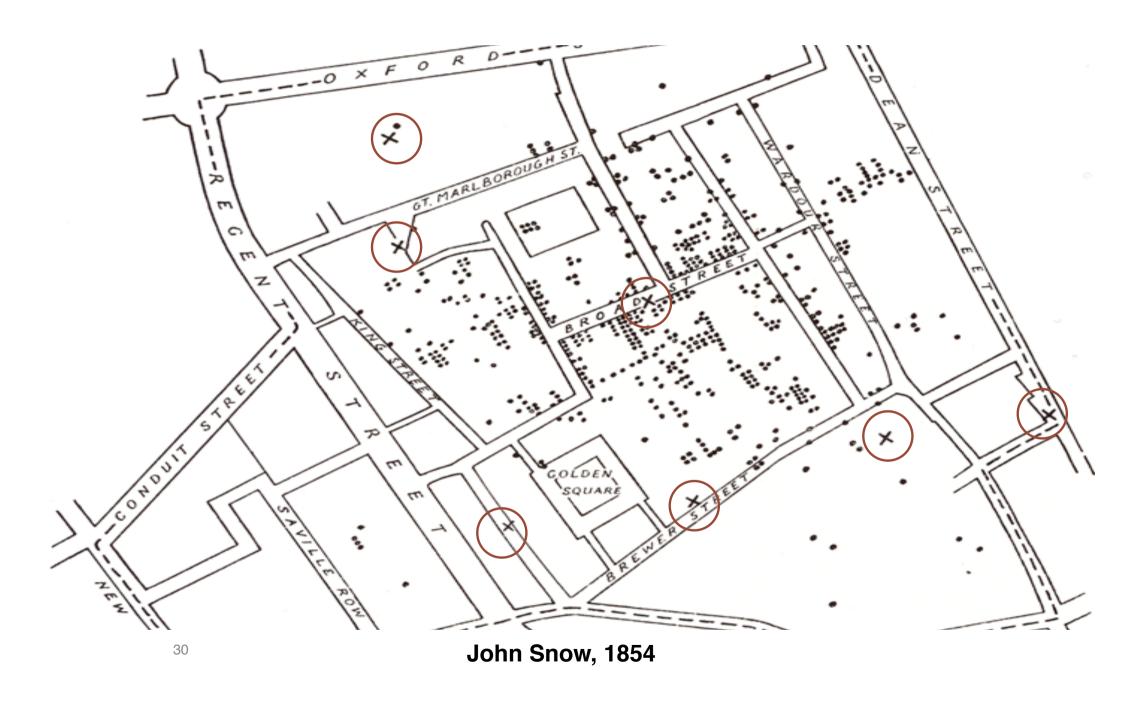

HISTORICAL EXAMPLES

Napoleon's March on Moscow

Charles Minard, 1869

Named the best statistical graphic ever drawn (by Edward Tufte)

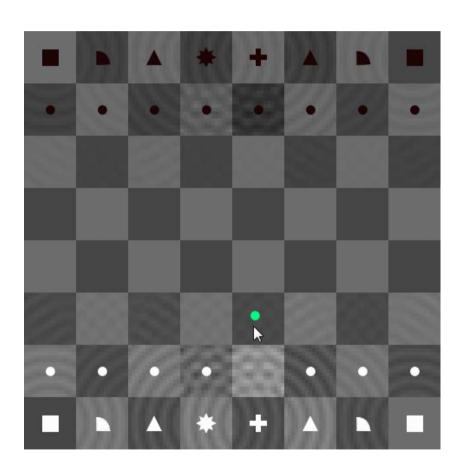

- Includes: spatial layout linked with stats on: army size, temperature, time
- Tells a story in one overview

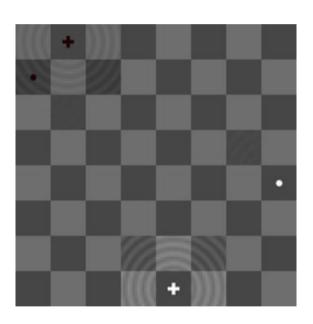


More info: The Visual Display of Quantitative Information (Tufte)

The Broadway Street Pump

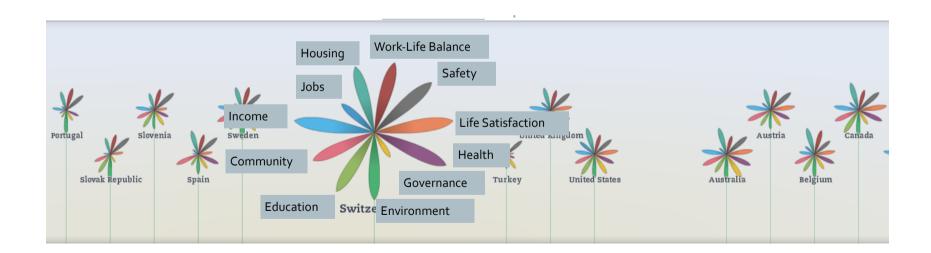
- In 1854 cholera broke out in London
 - 127 people near Broad Street died within 3 days
 - 616 people died within 30 days
- "Miasma in the atmosphere"
- Dr. John Snow was the first to link contaminated water to the outbreak of cholera
- How did he do it?
 - he talked to local residents
 - identified a water pump as a likely source
 - used maps to illustrate his theory
 - convinced authorities to disable the pump


... AND MORE RECENTLY


TrashTrack

Winner of the NSF International Science & Engineering Visualization Challenge! http://senseable.mit.edu/trashtrack/

Artificial Intelligence



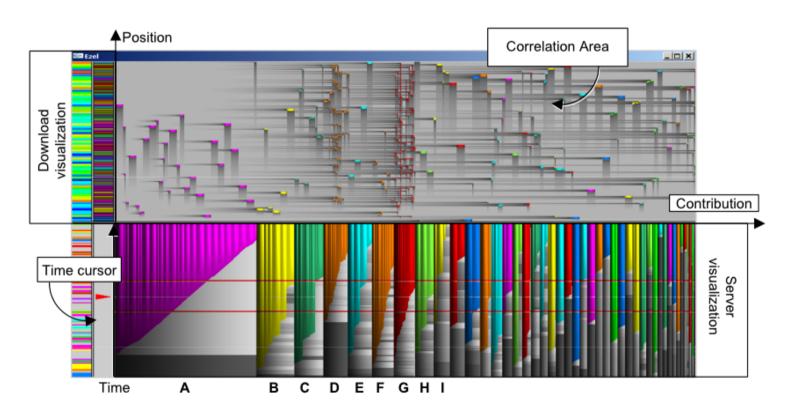
http://www.turbulence.org/spotlight/thinking/chess.html

Open Data

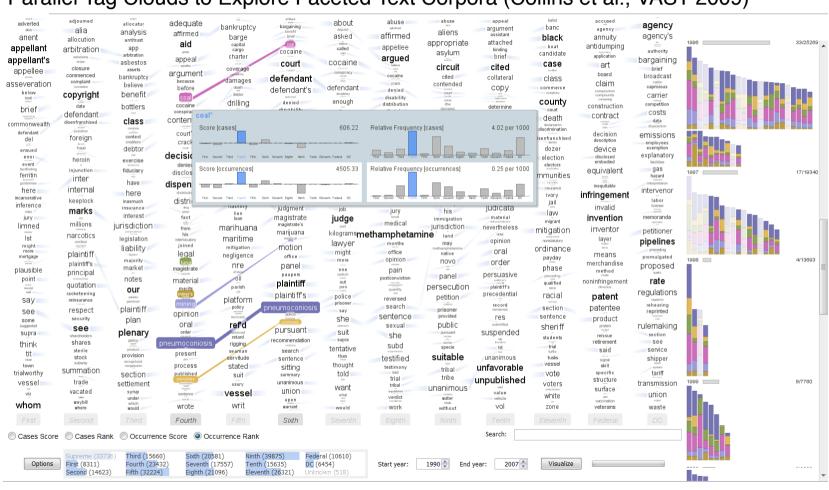
- Movement making government data freely available
- Encourage participation by everyone

Specific Visualization Environments

Molecular visualisation in the Reality Cube University of Groningen, NL


Tabletops for Visualization University of Calgary

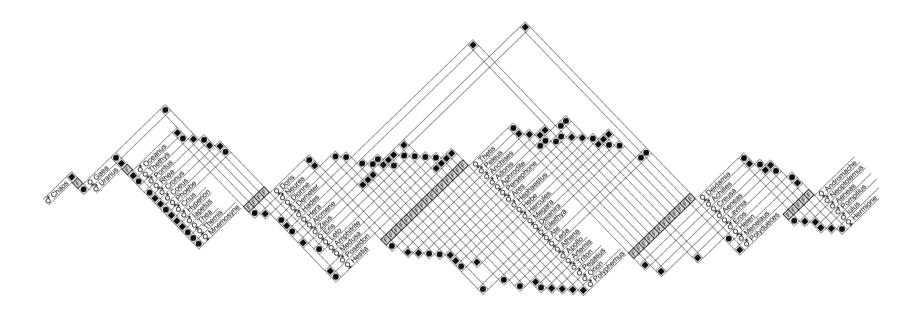
WILD Wall, INRIA

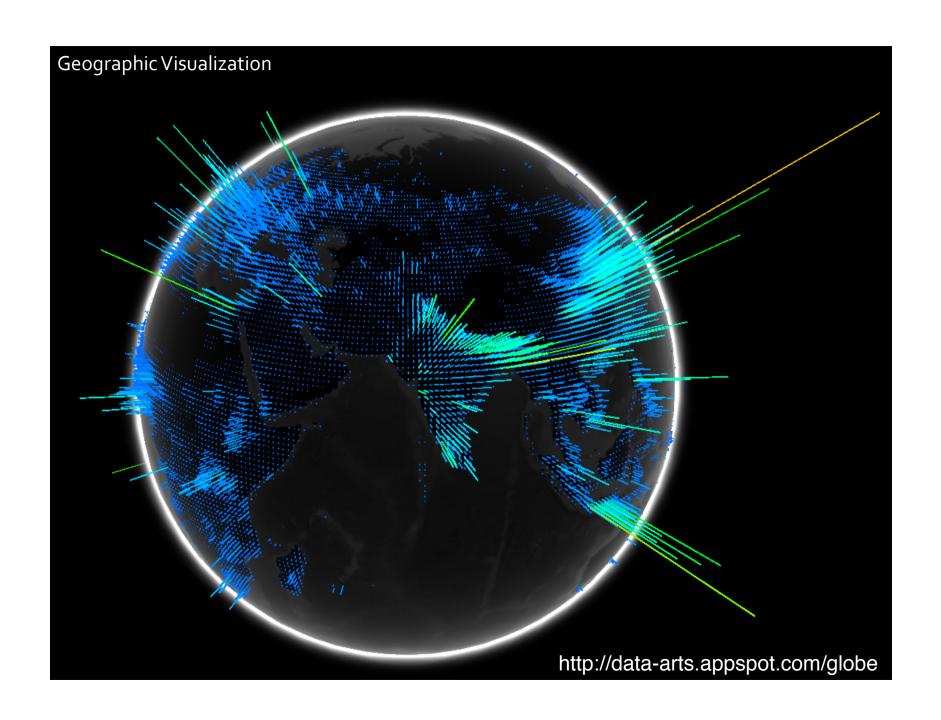

Software Visualization

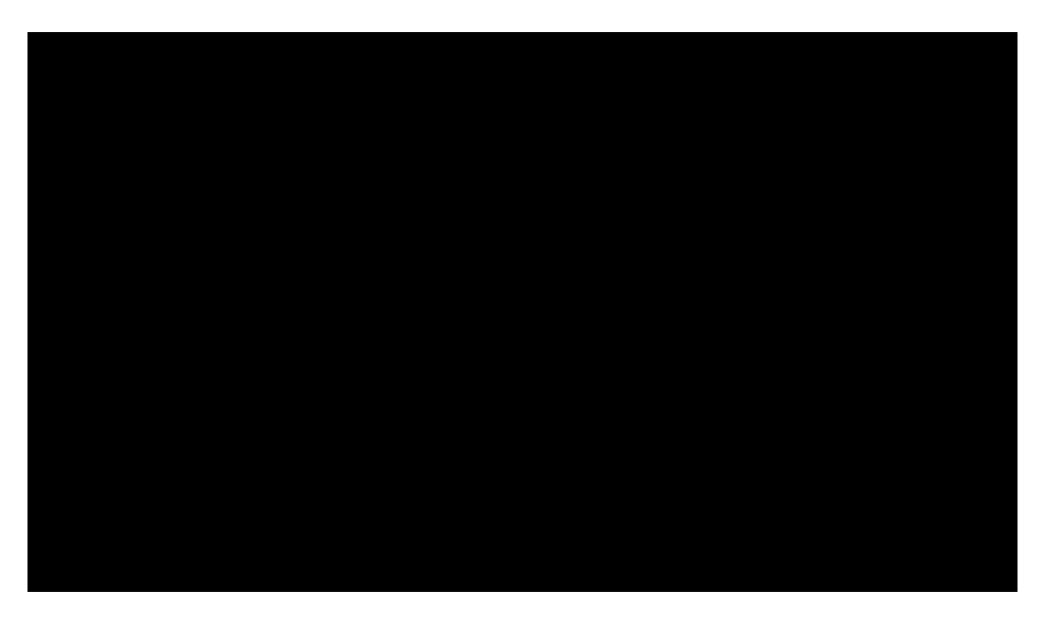
EZEL: a Visual Tool for Performance Assessment of Peer-to-Peer File-Sharing Networks (Voinea et al., InfoVis, 2004)

Text Visualization

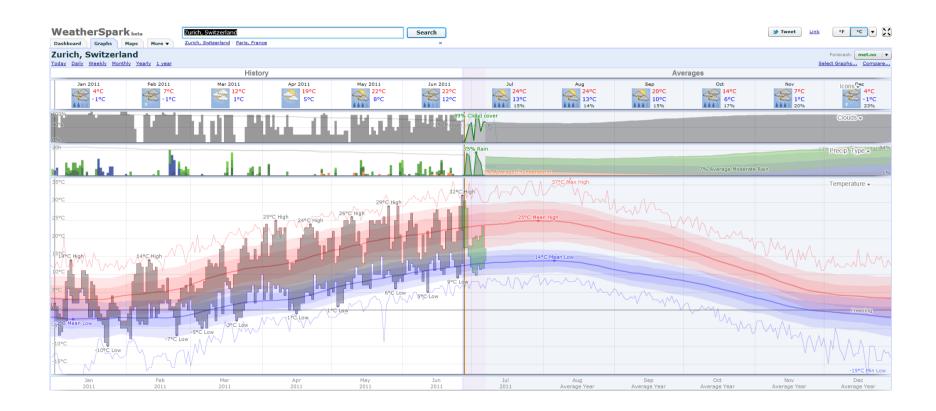
Parallel Tag Clouds to Explore Faceted Text Corpora (Collins et al., VAST 2009)


Graphs




http://www.facebook.com/note.php?note_id=469716398919

Visualizing Friendships by Paul Butler on Tuesday, December 14, 2010


Family Trees

Weather

Data Dashboards

Resources for more examples

Visualization conferences

Blogs

http://infosthetics.com/

http://fellinlovewithdata.com/

http://eagereyes.org/

http://flowingdata.com/

http://www.informationisbeautiful.net/

Books

Textbooks

Readings in Information Visualization: Using Vision to Think (a bit old now but good intro)

Information Visualization (Robert Spence – a light intro, I recommend as a start)

Information Visualization Perception for Design (Colin Ware, focused on perception and cognition)

Interactive Data Visualization: Foundations, Techniques, and Applications (Ward et al.)

Visualization Analysis and Design (Tamara Munzner, most recent book)

Examples

Beautiful Data (McCandless)

Dear Data (Lupi, Posavec)

Now You See it (Few)

Tufte Books: Visual Display of Quantitative Information (and others)

... (many more, ask me for details)

It is difficult to create

CREATE VISUALIZATIONS

What is a representation?

A representation is

a formal system or mapping by which the information can be specified (D. Marr) a sign system in that it stands for something other than its self.

for example: the number thirty-four

decimal

100010 XXXIV binary

Presentation

different representations reveal different aspects of the information

decimal: counting & information about powers of 10,

binary: counting & information about powers of 2,

roman: impress your friends (outperformed by positional system)

presentation

how the representation is placed or organized on the screen

34, *34*, *<u>34</u>*

Principles of Graphical Excellence

Well-designed presentation of interesting data

- a matter of substance, statistics, design

Complex ideas communicated with clarity, precision, efficiency

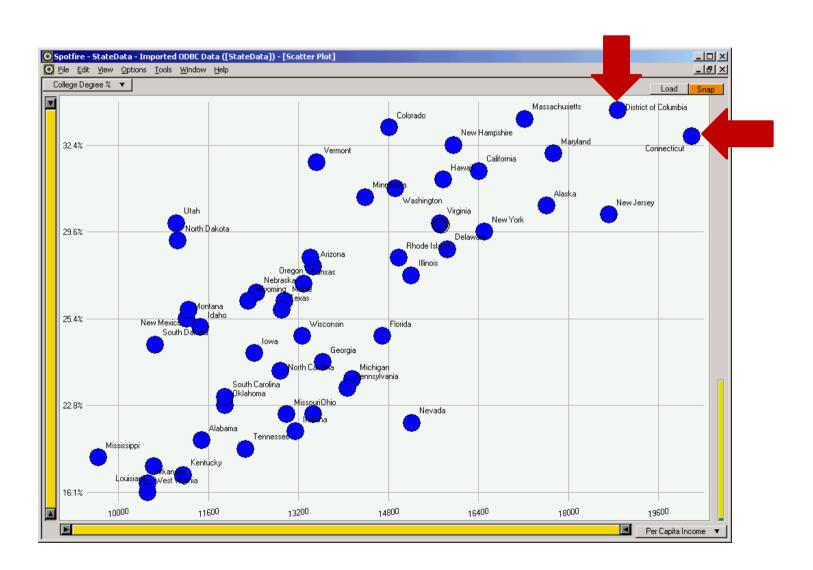
Gives the viewer the greatest number of ideas in the shortest time with the least ink in the smallest space

Involves almost always multiple variables

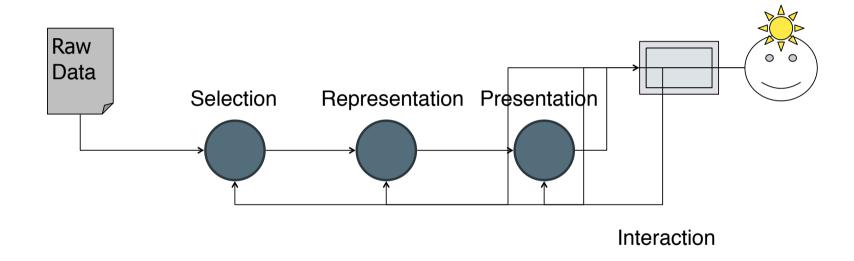
Tell the truth about the data

Or a bit more simply...

Solving a problem simply means representing it so as to make the solution transparent ... (Simon, 1981)

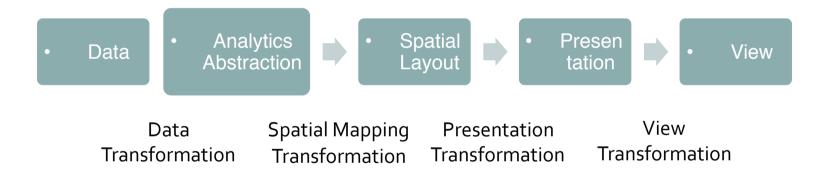

Good representations:

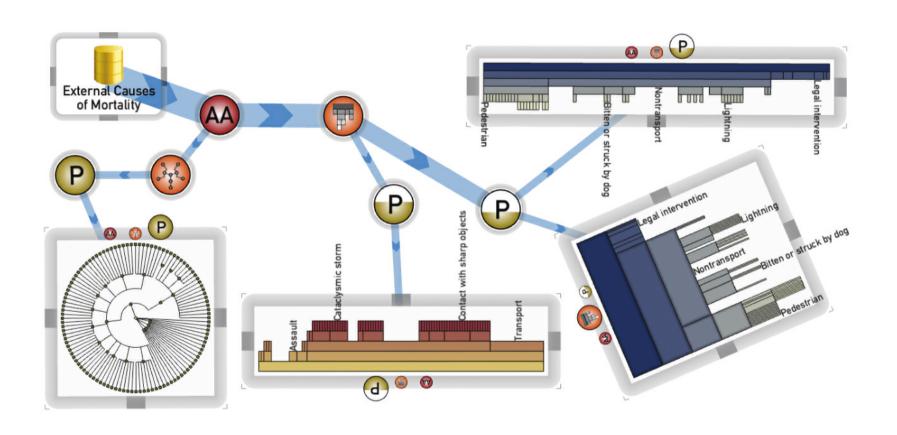
allow people to find relevant information
information may be present but hard to find
allow people to compute desired conclusions
computations may be difficult or "for free" depending on representations


Good representation?

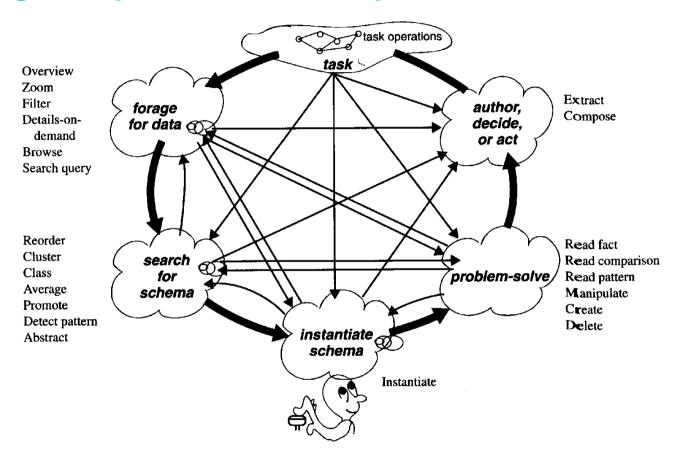
able - StateData ()		×	- Invited in quant	L7.170	1713
		Load Snap	Minnesota	30.4%	1438
State	College Degree %	Per Capita Income	Mississippi	19.9%	964
Alabama	20.6%	11486	Missouri	22.3%	1298
Alaska	30.3%	17610	Montana	25.4%	1121
Arizona Arizona	27.1%	13461	Nebraska .	26.0%	1245
	17.0%		Nevada	21.5%	1521
<u>Arkansas</u>		10520	New Hampshire	32.4%	1595
<u>California</u>	31.3%	16409	New Jersey	30.1%	1871
<u>Colorado</u>	33.9%	14821	New Mexico	25.5%	1124
Connecticut	33.8%	20189)	New York	29.6%	1650
Delaware	27.9%	15854	North Carolina	24.2%	1288
District of Columbia (36.4%	18881	North Dakota	28.1%	1105
Florida	24.9%	14698	Ohio	22.3%	1346
	24.3%	13631	Oklahoma	22.8%	1189
Georgia :			Oregon	27.5%	1341
<u>Hawaii</u>	31.2%	15770	Pennsylvania	23.2%	1406
daho	25.2%	11457	Rhode Island	27.5%	1498
llinois	26.8%	15201	South Carolina	23.0%	1189
ndiana	20.9%	13149	South Dakota	24.6%	1066
owa	24.5%	12422	Tennessee	20.1%	1225
Kansas	26.5%	13300	Texas	25.5%	1290
Kentucky	17.7%	11153	Utah	30.0%	1102
-			Vermont	31.5%	1352
<u>_ouisiana</u>	19.4%	10635	▶ Virginia	30.0%	1571
<u>Maine</u>	25.7%	12957	Washington	30.9%	1492
<u>Maryland</u>	31.7%	17730	West Virginia	16.1%	1052
Massachusetts	34.5%	17224	Wisconsin	24.9%	1327
Michigan	24.1%	14154	Wyoming	25.7%	1231

Good representation!


How do we arrive at a visualization?


The Visualization Pipeline

Visualization Reference Model


Also a visualization pipeline a bit expanded

Visualization pipeline in an image

Knowledge Crystallization Cycle

Working with visualizations in NOT a linear process

[Card et al., 1999]

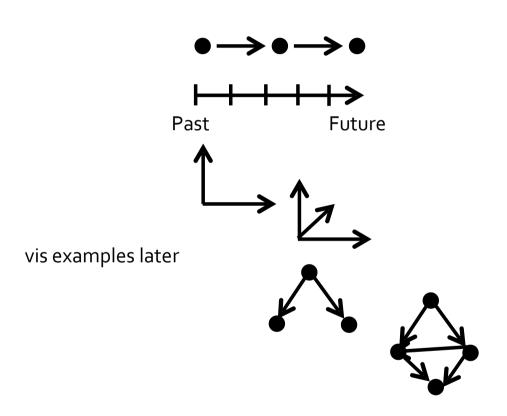
Pitfalls

- Selecting the wrong data
- Selecting the wrong data structure
- Filtering out important data
- Failed understanding of the types of things that need to be shown
- Choosing the wrong representation
- Choosing the wrong presentation format
- Inappropriate interactions provided to explore the data

Recap

- So far you
 - learned what information visualization is
 - learned about the advantages of visualization
 - saw a number of examples (historical and new)
- Next
 - you will get to know your data
 - you will learn about the basic components of visualization

Data

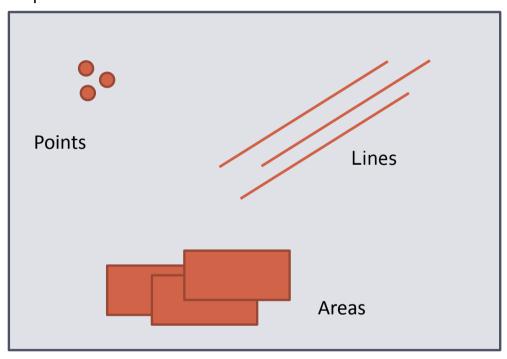

- Data is the foundation of any visualization
- The visualization designer needs to understand
 - the data properties
 - know what meta-data is available
 - know what people want from the data

Nominal, Ordinal and Quantitative

- Nominal / Categorical (labels)
 - Fruits: apples, oranges
- Ordered
 - Quality of meat: grade A, AA, AAA
 - Can be counted and ordered, but not measured
- Quantitative
 - Intervals or Ratios
 - Can do arithmetic on it

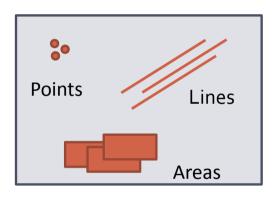
Data-Type Taxonomy

- 1D (linear)
- Temporal
- 2D (maps)
- 3D
- nD (relational)
- Trees (hierarchies)
- Networks (graphs)


Shneiderman: The Eyes Have It

Why is this important?

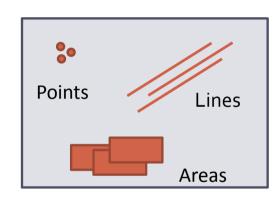
- Nominal, ordinal, and quantitative data are best expressed in different ways visually
- Data types often have inherent tasks
 - temporal data (comparison of events)
 - trees (understand parent-child relationships)
 - **–** ...
- But:
 - any data type (1D, 2D,...) can be expressed in a multitude of ways!


Visualization's Main Building Blocks

Marks which represent:

Points

"A point represents a location on the plane that has **no theoretical length or area**. This signification is independent of the size and character of the mark which renders it visible."

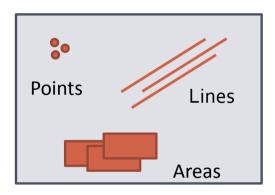


a location

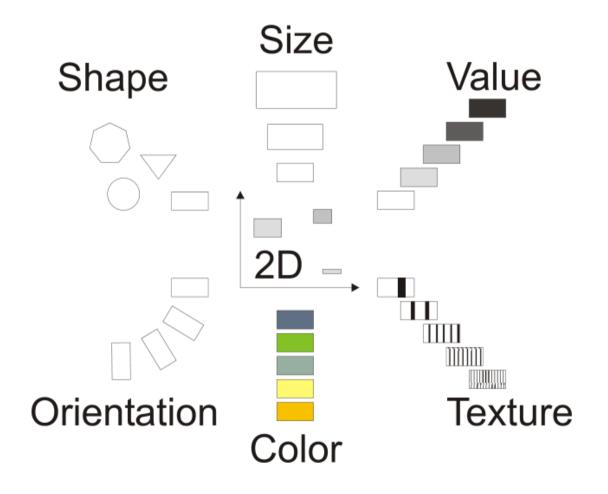
marks that indicate points can vary in all visual variables

Lines

"A line signifies a phenomenon on the plane which has **measurable length but no area**. This signification is independent of the width and characteristics of the mark which renders it visible."



a boundary, a route, a connection


Areas

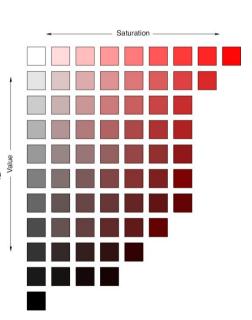
"An area signifies something on the plane that has measurable size. This signification applies to the entire area covered by the visible mark."

an area can change in position but not in size, shape or orientation without making the area itself have a different meaning

Visual Variables Applicable to Marks

From Semiology of Graphics (Bertin)

Additional Variables for Computers


motion

direction, acceleration, speed, frequency, onset, 'personality'

saturation

colour as Bertin uses largely refers to hue saturation != value

Extending those from Semiology of Graphics (Bertin)

Additional Variables for Computers

- flicker
 - frequency, rhythm, appearance
- depth? 'quasi' 3D
 - depth, occlusion, aerial perspective, binocular disparity
- Illumination

transparency

From Semiology of Graphics (Bertin)

Characteristics of Visual Variables

Selective:

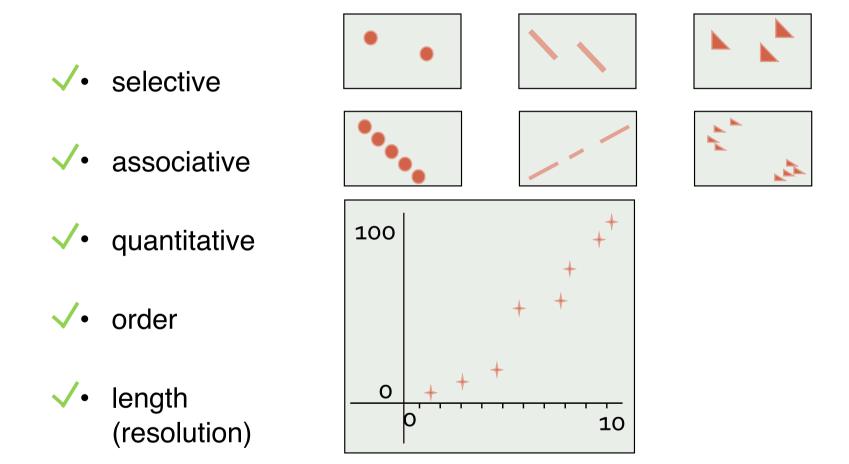
Can this variable allow us to spontaneously differentiate/isolate items from groups?

Associative:

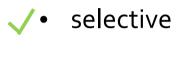
Can this variable allow us to spontaneously group items in a group?

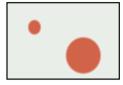
Ordered:

Can this variable allow us to spontaneously perceive an order?


Quantitative:

Can the difference between two marks in this variable be interpreted numerically?

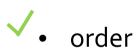

Length (resolution):

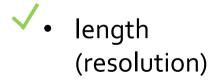

Across how many changes in this variable are distinctions possible?

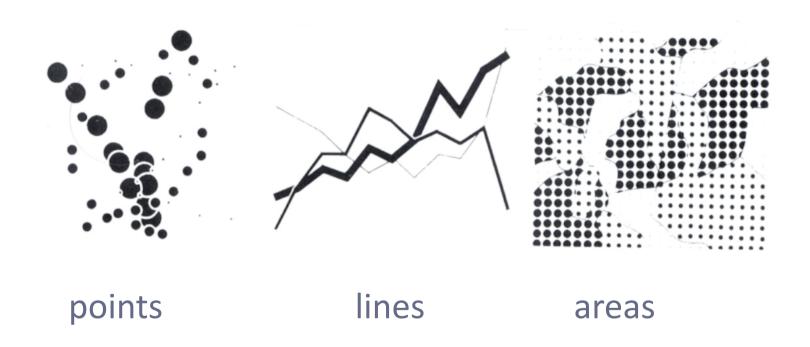
Visual Variable: Position

Visual Variable: Size






• associative

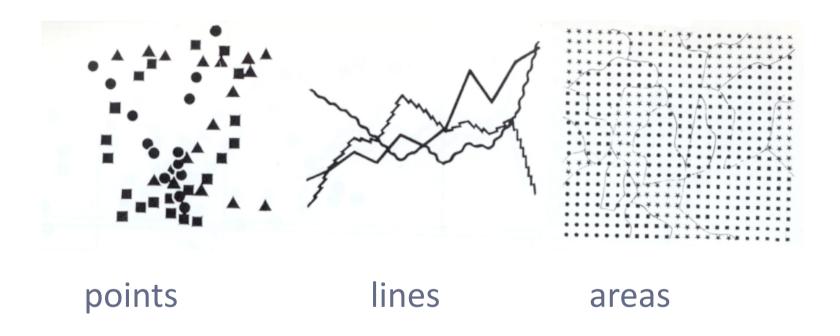


Size

Visual Variable: Shape

→ selective

10//


≠• ordered

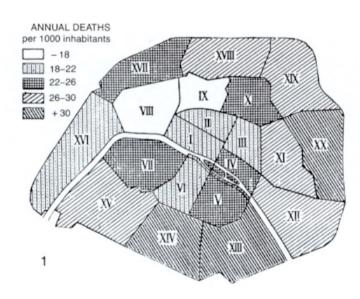
- ≠• quantitative
- length (resolution)

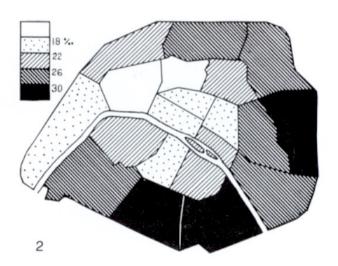
Shape

Visual Variable: Value

- selective
- associative
- ≠ · quantitative
- ✓ · order

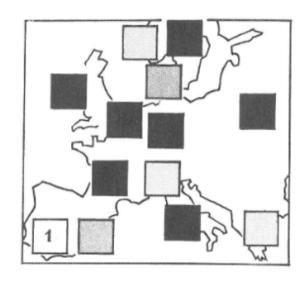
- ✓ · length (resolution)
 - theoretically infinite but practically limited
 - association and selection ~ < 7 and distinction ~ 10

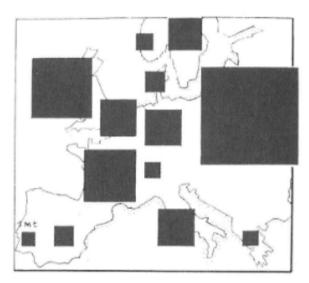

Value


points lines areas

Value

ordered, cannot be reordered

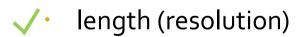

Values not ordered correctly according to scale Information has to be read point by point


Values ordered correctly Image much more useful

Value

is not quantitative

if Portugal is 1, what is France? you need a legend!


if Portugal is 1, what is France? still hard, but doable

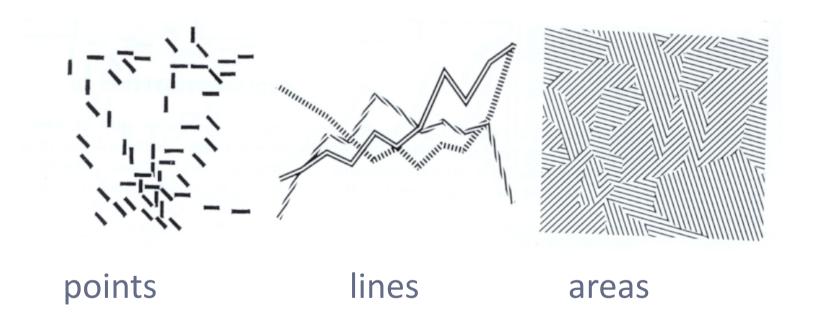
Visual Variable: Colour

- ✓ selective
 ✓ associative
 ✓ quantitative
 ✓ order
 - ! length (resolution)
 - theoretically infinite but practically limited
 - association and selection ~ < 7 and distinction ~ 10

Visual Variable: Orientation

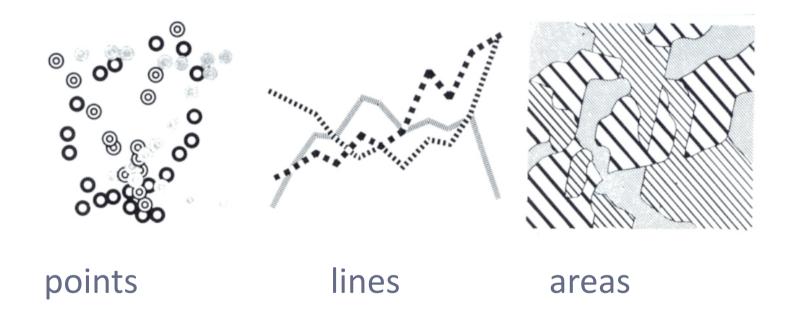
- selective associative
- ≠ quantitative
- ≠ order

• ~5 in 2D; ? in 3D



Orientation

Visual Variable: Texture

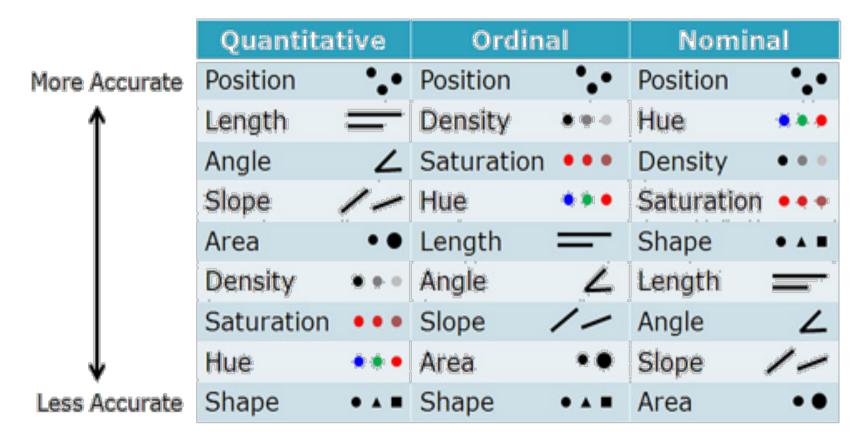

- selective
- / associative
- quantitative
- ≠ order
- / length
 (resolution)
 - theoretically infinite


Texture

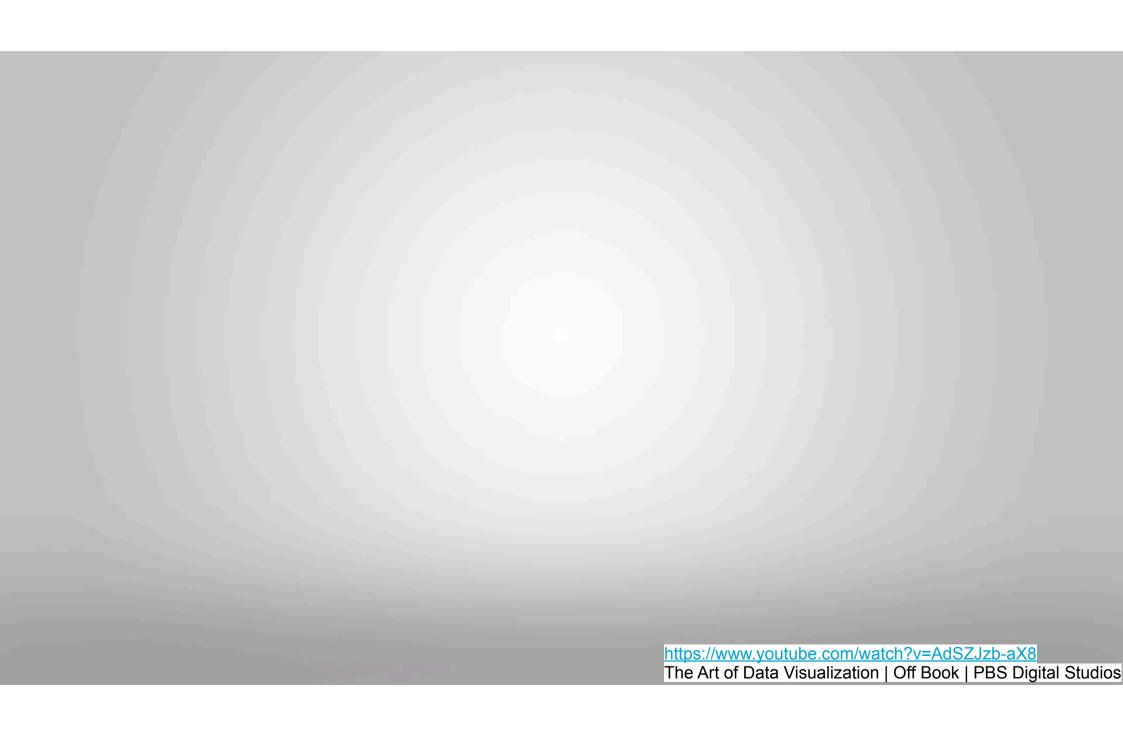
Visual Variable: Motion

- selective
 motion is one of our most powerful attention grabbers
 associative
 moving in unison groups objects effectively
- quantitative subjective perception
- ≠ order
- ? length (resolution)
 distinguishable types of motion?

Motion



Visual Variables


Visual Variable	Selective	Associative	Quantitative	Order	Length
Position	Yes	Yes	Yes	Yes	Dependant on resolution
Size	Yes	Yes	Approximate	Yes	Association: 5; Distinction: 20
Shape	With Effort	With Effort	No	No	Infinite
Value	Yes	Yes	No	Yes	Association: 7; Distinction: 10
Hue	Yes	Yes	No	No	Association: 7; Distinction: 10
Orientation	Yes	Yes	No	No	4
Grain	Yes	Yes	No	No	5
Texture	Yes	Yes	No	No	Infinite
Motion	Yes	Yes	No	Yes	Unknown

Carpendale, 2003

Summary

Jacques Bertin refined by Cleveland&McGill then by Card&Mackinlay

Summary

- Now you know the main building blocks are marks
- Marks are modified by visual variables
- Visual variables have specific characteristics
- These characteristics influence how the data will be perceived