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Abstract�A common goal in graph visualization research is the design of novel techniques for displaying an overview of an 
entire graph. However, there are many situations where such an overview is not relevant or practical for users, as analyzing the 
global structure may not be related to the main task of the users that have semi-specific information needs. Furthermore, users 
accessing large graph databases through an online connection or users running on less powerful (mobile) hardware simply do not 
have the resources needed to compute these overviews. In this paper, we advocate an interaction model that allows users to 
remotely browse the immediate context graph around a specific node of interest. We show how Furnas� original degree of interest 
function can be adapted from trees to graphs and how we can use this metric to extract useful contextual subgraphs, control the 
complexity of the generated visualization and direct users to interesting datapoints in the context. We demonstrate the 
effectiveness of our approach with an exploration of a dense online database containing over 3 million legal citations. 
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1 INTRODUCTION

Visualizations of very large graph datasets typically aspire to present 
the user with an overview of the entire graph, so no information is 
missing and the data can speak for itself. However, this lofty goal 
often results in visualizations that focus exclusively on providing a 
global view of the structure of the graph. While topology-based 
graph visualizations ideally may allow analysts to deduce central 
actors or clusters in a graph, in practice the density and sheer size of 
many graphs make it hard to create an effective visual representation 
of the whole graph. Visualizations that faithfully try to render all the 
data often suffer from cluttering and make it difficult for users to 
accomplish even very basic tasks such as following edges or 
counting in-degree of nodes [19]. Structural clustering techniques 
can reduce the complexity of the data under analysis, but often result 
in abstract high-level diagrams in which the semantics of the clusters 
are not always clear.  

Users that wish to obtain overviews of very large graphs are 
typically trying to learn something about a particular dataset. For 
example, a social scientist may want to identify cliques in a very 
large social graph and see how they interact, while a software 
architect may want to deduce the decomposition of a program from 
its call graph. These use cases typically deal with global patterns like 
clusters and outliers. However, there is also a very large class of 
users that frequently deal with large network data but are not 
interested in global patterns in this data. Instead they are trying to 
learn something more about a particular datapoint in the dataset and 
how this point relates to the rest of the data. As a concrete example, 
financial fraud analysts typically try to understand the pattern of 
connections associated with a specific fraudulent bank account, 
while programmers need to understand the dependencies of a 
specific piece of code if they want to understand the impact of 
potential changes. 

A second argument against presenting users with global 
overviews is of a more practical nature. Typically, multiple analysts 
look at a single large dataset that is being maintained at a single 

centralized location. Many of these graph datasets are huge even by 
today�s standards, and transferring them from a centralized server to 
multiple client machines is not an option. Apart from that, even the 
visualization designers might not have access to the full data because 
of privacy reasons or other access restrictions, making it impossible 
to pre-compute overviews for these giant graphs. 

For these two reasons, we explore an alternative to the traditional 
�overview, zoom, details on demand� browsing model [18], which 
can be loosely characterized as �search, show context, expand on 
demand�. In this model, users pick a particular datapoint as a focus 
for analysis and the system then computes and displays an �optimal� 
relevant context given the users� current interests. Users can then 
direct the visualization system to expand this context in a direction 
he or she deems interesting. This model is somewhat similar to the 
idea of �Plant a seed and watch it grow� [12]. However, whereas that 
model relied solely on topology for context, our approach is 
extensible to include other types of relevant context based on 
inherent attributes, associated content, and user interactions. 

To determine this relevant context, we extend the well-known 
concept of degree of interest (DOI) [4] from trees to general graphs. 
By using a DOI function to assign a measure of relevance to each 
node in the graph, we can extract a maximal interest subgraph 
around the point of interest. Users can then interact with this initial 
subgraph and expand it in any direction. Our degree of interest 
functions use both embedded attributes and topology of the graph, as 
well as recorded actions of users. As user tasks are often exploratory 
and not well-defined, users have full control over the interest sources 
and can adapt them during exploration. We demonstrate our 
approach on approximately 15 gigabytes of legal documents 
containing information on all US federal and Supreme Court cases to 
date, resulting in a citation graph of over 300,000 nodes and 3.3 
million edges. Our system allows multiple analysts to simultaneously 
explore this online citation graph through an interactive web-based 
client. Concretely, we claim the following contributions: 

 An adaptation of DOI from tree to graph datasets.  
 An augmentation of DOI to include inferred interest from the 
users� search process. 
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 Methods for diffusing interest over an entire graph to mitigate 
local minima. 

 Novel visualization and interaction techniques that use DOI 
functions to reduce complexity of very high degree nodes and to 
provide visual clues to help guide users to hidden, yet interesting 
results. 
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Our paper begins with a reflection on related work, where we 
categorize and discuss Degree of Interest based research as well as 
current approaches to large graph visualization. In Section 3 we 
explain our methods for adapting DOI to graphs and our resulting 
implementation. Section 4 demonstrates our system on a legal corpus 
of documents and highlights a few examples of how our approach 
succeeds. Finally, we discuss the positive and negative aspects of 
DOI graphs and suggest future work in Section 5, while we conclude 
in Section 6. 

2 RELATED WORK 
This section discusses previous work in the area of degree of interest 
visualization and summarizes the state of current large graph 
visualization techniques that do not focus on displaying a structural 
overview. 

2.1 Degree of Interest functions in Visualization 
Furnas first introduced the concept of Degree of Interest (DOI) in 
[4], realizing that information items have different levels of 
importance to different observers, depending on their viewpoint. 
Instead, an observer�s initial point of interest (or focus) can be used 
to compute a numerical value for each data item that indicates its 
degree of interest. These values can then be used to create compact 
elided or abstracted views of the full data, by only displaying 
information items above a certain �interestingness� threshold. 
Furnas� original paper showed how these ideas can be applied to 
trees or calendars and he later revisits them in [5] offering theories of 
the importance of DOI for real user�s tasks.  

Card and Nation used this concept to implement DOITrees, a tree 
visualization that uses DOI calculations and focus+context 
interaction techniques [1]. Heer and Card [9] extends this work with 
an efficient, space-constrained, multi-focal tree layout. 

 Although DOI functions are well established to display trees, 
applications to general graphs are limited. Two notable techniques 
[7][8] use an explicit degree of interest function to create multilevel 
abstractions of a whole graph by more aggressively clustering nodes 
further away from a focal node. In practice however, they tend to 
generate very abstract views where the meaning of a cluster of nodes 
to the user is not always clear and the actual clustering structure 
changes substantially with adjustment of the focus.  

Graphical distortion techniques are related to the concept of 
degree of interest, but instead of explicitly assigning an interest value 
to nodes they perform information compression in screen space. That 
is, nodes further away from a predefined focus are assigned less 
screen space, resulting in a graphical fisheye [17]. Other approaches 
do not necessarily assign additional screen space, but use visual cues 
such as font size and color to focus user attention on interesting 
items [2]. Although graphical information compression techniques 
can be useful in some cases, they still require access to and rendering 
of the entire graph, which is impractical for our case. 

2.2 Large graph visualization 
As mentioned in the introduction, many graph visualization 

techniques try to present the user with a holistic view of the entire 
graph. This typically involves very efficient layouts, multiscale 
clustering techniques or matrix representations. Although providing 
a structural overview of the graph is a laudable goal, there are many 
cases where the user is simply not interested in a global view of the 
whole graph, but wants to solve a particular concrete task on the 
graph instead. Thus, we focus the discussion here to related work 
that does not focus on showing the overall graph topology. We 
discern three basic categories that all use different approaches to 
reduce the complexity  

2.2.1 Attribute based abstractions 
The first category of approaches proposes to use the node 

attributes in multivariate graphs as parameters for abstraction. 
PivotGraph [23] compresses multivariate graph in two dimensions 

by rolling up nodes into metanodes if they have the same attribute 
value for a particular dimensions. Semantic substrates [19] use node 
attributes to provide a basic layout of the graph based on space 
subdivision and then superimpose the edges. Approaches in this 
category have the advantage that one can more easily make 
statements on higher level features as these relate directly to the 
application area. Unfortunately they generally do not provide 
detailed information on the particular connections of a single node. 

2.2.2 Contextual views 
Closest to our proposed approach, contextual views allow the 

user to pick a point of interest in the graph, and show the immediate 
context around that point. Both Touchgraph [22] and Palantir [14] 
offer commercial graph visualization components that allow users to 
select a focal node and explore the surrounding subgraph. TreePlus 
[12] allows users to explore graphs using an enhanced tree layout, 
which users often find more comprehensible than a graph layout. 
These approaches perform relatively well when the average degree 
of nodes in a graph is small, but struggle with very high degree 
nodes. 

2.2.3 Computational approaches 
By first computing network metrics on the graph, we can 

compute relevant subgraphs or detect outliers in the graph, without 
having to visualize it first. SocialAction [15] uses attribute ranking 
and coordinated statistical views to allow users to use metrics from 
social network analysis to isolate important nodes, clusters and 
outliers in graphs. NodeXL [20] also follows this approach by 
integrating the statistical and visual capabilities of Excel with graph 
visualizations. Although these type of approaches allow the user to 
target specific features when exploring, the computational 
complexity of the metrics involved prohibits application to truly 
large graphs. 

3 DEGREE-OF-INTEREST GRAPHS  
In this section we show how we can extend the well-known 

concept of Degree of Interest (DOI) from trees to graphs. In Section 
3.1 we will outline our proposed interest function and in Section 3.2 
we show how we can use this interest function to both compute 
interesting subgraphs and control the complexity of the visualization. 
Finally, in Section 3.3 we explain how we can use these algorithmic 
pieces to set up a system that lets us browse massive graphs from a 
remote client. 

3.1 Extending DOI to graphs 
In his seminal paper [4], Furnas defined a generalized degree of 
interest function for data items by discerning two components: An a 
priori interest function that defines the general importance of a data 
item x irrespective of the user�s current interest and a distance 
function in which the interest of an item depends on the currently 
selected focus node y. This results in a two part interest function that 
can be expressed as: 

 
DOI(x | y) = API(x) + D(x,y) 
 

In other words, the total interest of a point x given a focus point y 
is a linear combination of an a priori interest function API and a 
distance function D. Furnas showed that for many types of data both 
functions have natural definitions. As an example, for trees API(x) 
can be defined in terms of the distance to the root. Distance can then 
be directly mapped to graph distance in the tree. By effectively 
eliding nodes below a certain interest threshold from screen we can 
create comprehensive displays of potentially very large information 
structures. 

There exists a natural way to adapt these basic definitions to 
general graphs: API(x) can be computed in terms of structural graph 
properties or node attributes, such as node degree or the value of a 
particular node attribute. D(x,y) can be directly mapped to minimal 
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graph distance. Note that the distance between two nodes can again 
depend on multiple factors such as edge weight or other edge 
attributes. Thus, it is necessary to define a separate disinterest 
function EI(e,x,y) > 0 for each edge, where higher values indicate 
less interest in following a link e between nodes x and y. This 
function can be used to define the path length between two arbitrary 
nodes in the graph. In theory, we can then use this adapted DOI 
function to extract a maximal interest subgraph from a very large 
graph given an initial focal node y. In practice, however, two 
problems remain.  

The first is how users actually pick an initial focal node y in a 
potentially very large graph if users do not know a node�s exact 
name or identifier. Although this process is largely ignored in 
previous work on degree of interest based visualizations, we 
emphasize it as the Search component of our �Search, Show 
Context, Expand on Demand� model.  

Fig. 1. By diffusing interest values over the network, we can use 
a greedy local search heuristic to find maximal interest 
subgraphs (dark grey) when starting from the focal node 
(circled) Traditional information visualizations typically rely on 

opportunistic �browsing� of high level (visual) overviews of the data 
to identify potentially interesting starting points for analysis. In the 
absence of such a full data representation, users must search the 
entire node set for items of interest that satisfy certain parameters 
and then select one node from the result as focus. Note that this can 
be realized in different (visual and textual) ways. In a simple case, 
the user specifies a textual search term and the system returns a list 
of nodes matching the term.  A search interface that supports faceted 
search is another option, if structured attribute information is 
available. Another approach is a visual search interface that presents 
users with a simplified graphical representation (e.g. a scatterplot) of 
all items and allows a selection of results graphically.  

In fact, the actual search parameters z that users specified give 
important hints on the interest a user assigns to particular nodes. We 
therefore propose an inclusion of a third term in the DOI function 
that captures this fact. The so-called User Interest (UI) function can 
be expressed as the interest information that is known before the user 
picks a focal node. Examples of this information include the search 
score of a node for a particular textual query or the facets used in a 
faceted search. More explicitly, if users performed a faceted search 
for items that, for example, are in a particular price range and have a 
particular feature, the DOI algorithm needs to assign higher 
relevance to items that match one or more of those criteria. This 
results in the following function definition: 

 
DOInaive(x | y,z ) = API (x) + UI (x,z) + D(x,y) 

 
A second problem is that the interest function over graphs has many 
local maxima. That is, there are many potentially interesting nodes, 
surrounded by non-interesting nodes. Typically, in previous work on 
trees, DOI functions are strictly nested, that is, DOI(x) of any node x 
in a subtree of r will never be larger than DOI(r). This allows for fast 
recomputation of DOI values [9] and guarantees connected trees 
when thresholding on DOI. However, there is no such guarantee in 
graphs. Applying a simple DOI threshold function to the data will 
then yield a potentially large number of disconnected subgraphs, 
while a local search algorithm starting from the focal node will not 
be able to reach the high interest node because it has no global 
knowledge of the surrounding structure (see Fig. 1). 

We can address this problem by slightly modifying the API and 
UI functions, such that the final interest value for a node x not only 
depends on its intrinsic interest, but also on the intrinsic interest 
values of its neighbors N(x): 

 
APIdiff(x) = max(API(x),   max(n N(x) : 1/EI(e,x,n)  APIdiff(n))) 

 
In other words, the interest of a node depends on the maximum of its 
own interest values and a fraction of its highest interest neighbour. In 
a sense, we are diffusing the interest values over the entire graph. 
The parameter  (0   < 1) determines the diffusion factor, where 
values closer to 1 increase the diffusion. By including the Edge 
Interest function we can optionally control the direction and amount 

of interest diffusion based on the interestingness of the connecting 
edge. We can compute this recursive function by recomputing the 
API for nodes in N(x) only when API(x) changes; the max quantifier 
limits the number of recomputations needed to a small number in 
practice, depending on the value of . An analogous definition can be 
used for UIdiff(x). 

Our final resulting interest function for a node x then captures the 
a priori interest, the parameters the user has specified in their search 
z for a focus node y and the distance of x from that focus: 

 
DOI(x | y,z ) = APIdiff(x) + UIdiff(x,z) + D(x,y) 
 
As defined, API needs to be computed only once, the UI needs to be 
recomputed whenever the initial search terms z change and D needs 
to be recomputed whenever the focal node y changes. In the next 
section, we show how we can use this interest function to allow users 
to interactively navigate very large graphs using a remote client. 

3.2 Extracting contextual subgraphs 
The second step of our proposed interaction model is Show Context. 
Given a giant graph G and an initial node of interest y, a challenge 
still remains on how to compute a subgraph F of G that is small 
enough to transmit to a client, but also captures as much of the 
relevant context around y as possible. More formally, we need to 
efficiently compute a connected subgraph F of size at most S that 
contains y and has maximal total interest.  

It is possible to perform an exhaustive search of the solution 
space since there are only a limited number of connected subgraphs 
around y of size S, but such a search is too expensive. Instead, we use 
a greedy optimization algorithm that provides a good tradeoff 
between speed and interest optimization. Starting from an empty 
nodeset F and a list of potential candidates {y}, we remove the 
candidate x with the highest DOI from the list, add it to F and then 
add the immediate neighbors N(x) of that candidate to the list of 
potential candidates. This process continues until the list of potential 
candidates is empty or until the size of F is S. The resulting 
algorithm runs in time O(S log S), as it is necessary to maintain a 
sorted heap of potential candidates. The computed subgraph is then 
transmitted to the client along with graph meta-data such as labels, 
current interest levels and edge weights. Layout of this subgraph can 
then either be done client side or server side, depending on the type 
of client. This flexibility opens up many new possibilities for graph 
exploration. For example, one can easily imagine users browsing the 
graph over a mobile phone, a device that generally does not have the 
processing power needed to compute layouts for larger graphs in 
interactive time. In these situations, the server is responsible for 
computing the layout. 
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3.3 Expanding a subgraph 
The final step of our interaction model is Expand-on-Demand. Once 
the local context for a node is available, users can decide to expand 
this context by bringing in more information. We have implemented 
a simple mechanism that allows users to click on a node x in the 
current context to bring in more contextual information for that 
particular node. This allows a user to direct the expansion of the 
current subgraph based on their current information need.  

RAM 

Graph Server 
 API interest values 
 Node attributes 
 Edge attributes 

Session 1 
 Search terms 
 UI interest values 
 Current Subgraph 

Session n 
 Search terms 
 UI Interest values 
 Current subgraph 

Client 1 
 Current subgraph 
 Layout 
 DOI interest values 

Client n 
 Current subgraph 
 Layout 
 DOI interest values 

Data 
server

Search 
index

Fig. 2. Basic client-server architecture. The server maintains a copy of 
the entire network in RAM with the API values. Client interaction is 
handled from separate session threads, which keep track of session 
specific information, such as the currently visible subgraph and UI 
values. 

A naive solution would then bring in all the neighbors of x when 
the user indicates a need for more context. However, the system 
cannot make any guarantees on the degree of the node in question. 
This may result in users inadvertently increasing the size of the 
subgraph with hundreds of nodes resulting in potentially unreadable 
graphs and putting significant strain on the display and layout 
subroutines. While indicating that a node has a very high degree (for 
example, by visually labeling the number of neighbors on each 
node) is useful, users need a way to limit the number of new items 
to ensure the visualization does not get too complex. 

The interest function defined in the previous section can be 
reused so the system can make judgment on which nodes in the set 
of adjacent nodes are most important. We can then limit the number 
of new nodes added to the current view by only adding the top N 
most interesting nodes. In combination with visual indicators on the 
size of the context, the amount of new information added to the 
current context can be controlled. If users wish to see more than N 
connected nodes, they can simple click the node multiple times, with 
each click bringing in N additional nodes.  

An important unsolved problem in information visualization is 
how to direct the users to potentially interesting items in the 
visualization. Without some sort of guide, visualizations of large 
datasets can quickly degrade into massive graphical representations 
that still require the user to click through or drill down on many 
different items to find something interesting. To address this problem 
we can reuse our DOI function, which tells us how interesting a 
particular node is, to guide the user to interesting parts of the graph 
that are currently hidden. We therefore visually highlight the n most 
interesting directions for expansion. Typically, n should be small 
(n<5) to avoid overloading the user with choices. In most cases this 
top n will be stable as nodes further away from the focus will have 
lower interest. That is, if the user expands a node that is not in the 
top n, the interest of the new node will most likely be lower than the 
interest of the top n nodes because its distance from the focal node is 
greater. Using these visual indicators, users are guided toward 
interesting parts of the graph, preventing them from having to 
needlessly expand dozens of items before hitting potentially 
interesting ones.  

3.4 Implementation 
We have implemented the above ideas in a client-server system that 
allows users to browse arbitrary graphs over an Internet connection. 
The only hardware constraint is on the server, which requires enough 
physical memory to cache the entire graph data in RAM for 
performance reasons. If not enough RAM is available we can always 
use a disk based graph storage, but this will notably impact 
performance. There are no hardware constraints on the client. In this 
section we will give a brief description of some of the practical 
implementation issues. Afterwards, in Section 4, we show how we 
can apply this general setup to a specific dataset. 

3.4.1 Graph Server 
The graph server is responsible for maintaining an in-memory 
representation of the entire graph and serving that data out to 
different clients connecting to the server. Our full database resides in 
an RDBMS on a separate database server. On startup, our graph 
server connects to the database and reads the full graph into RAM 
along with any node attributes needed to compute interest functions. 
Other attributes are fetched from the database server on demand, to 
conserve memory. After reading the data, the server computes 

APIdiff(x) for all nodes and stores the result with each node. Finally, 
it waits for connection requests from any clients. Since the full 
interest function is dependent on the user�s search terms and focal 
point, we cannot store the results of the DOI computation with each 
node.  

Data that is specific to a user�s session is therefore stored with a 
session object. Every session object runs in a separate thread inside 
the graph server and is responsible for maintaining information that 
pertains to a user�s current browsing session. The node layout is 
computed using a force directed algorithm. In past experiments, we 
generally found the classic gradient descent method unreliable and 
prone to local minima and oscillations. Instead, we opted to use the 
stress majorization optimization method [6] that provides far better 
layout stability and is sufficiently fast for medium sized graphs.  

3.4.2 Visualization Client 
The client�s main responsibility is to visually present the current 
subgraph to the user and handle all display and interaction tasks. Due 
to our extensible framework, the actual functionality of the client 
might depend on the capabilities of the platform on which it runs. 
For our use case, we implemented a client that runs in a standard 
web browser using Adobe�s Flash framework. Our client consists of 
four basic sections (see Fig. 3): A searchbox (a), a list of search 
results (b), the main canvas (c) and a panel (d) that allows users to 
adjust the DOI settings to the task at hand. The searchbox in the 
upper right allows the user to perform a textual search on the full 
dataset, as the client makes a Search request to the server. The 
results of that search are then displayed in a tabular search result list. 
We opted to include basic node properties relevant to the application 
area, as well as an indication on the size of the surrounding 
subgraph. The latter immediately gives an indication as to what the 
size of the display will be when that node is picked as a focal node, 
and prevents the user from selecting uninteresting singleton nodes. 
To avoid excessive computational overhead on the server we do not 
display the exact size if it is over a fixed threshold.  

The user can then pick any node x from this list of search results 
and drag it over to the main canvas to view its context. The client 
makes a request to receive a subgraph around x from the server. This 
subgraph is then displayed on the main canvas with the focal node 
highlighted. The sizes of nodes correspond to their (normalized) 
degree of interest to give more visual attention to nodes with high 
DOI. Node color is used to map a node attribute that is revelant to 
the application area. Furthermore, nodes that match the users� initial 
search query are surrounded with a blue halo. 
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Fig. 3. Basic user interface layout. A user types a query in the searchbox (a) which yields a number of hits presented in tabular form (b). 
One of these hits can then be dragged to the main screen (c) which shows the subgraph centered on that node. Other nodes that matched 
the user�s search are highlighted in blue. Users can adapt the balance between different components of the DOI function and the size of the 
subgraph in a separate panel (d). 

Users can click a node to send an expand request to the server to 
return its most interesting hidden connections. In the client 
visualization, fading edges emanate from nodes to show the user that 
more connections are available. Although the endpoints of these 
edges are not visible, they are included in the layout. This means that 
different fading edges connecting to the same node will point a 
single point in space, giving the user a visual clue that they connect 
to the same node. Not every non-visible connection is drawn because 
the degree of a single node might be too large to render, so we cap 
the number of fading edges per node to a maximum. To give users a 
more quantitative indication on the actual number of adjacent nodes, 
we also display the precise number on each node. After receiving a 
new set of connections a new layout is computed based on the initial 
layout and the whole graph is then smoothly animated to its new 
position. 

4 EVALUATION: LEGAL CITATION NETWORK 
To evaluate the initial benefits of our approach we applied it to a 
massive dataset of legal document citations. Legal practitioners 
sometimes need to interpret this citation graph of cases in order to 
understand court decisions. In the United States, laws rely on the 
concept of precedence, so lawyers must carefully study case citations 
to understand how relevant issues were ruled in prior cases [24][21]

Typically, searching for legal background information happens 
through a digital library platform such as LexisNexis or Westlaw 
[13]. These platforms however, are mainly text-based and focused on 
providing powerful search, convenient overviews of single 
documents, as well as quick linking between documents. Obtaining a 

context of cited documents typically requires manually clicking 
through a potentially large number of related cases, which are each 
visible in their own separate windows. This type of interaction model 
makes it hard to find relevant cases more than one step out, as that 
could possibly require manual inspection of hundreds of cases. 

The following case study is conducted on a set of over 15 
gigabytes of legal documents containing every federal court case in 
US history, but does not include cases tried by state courts. Still, 
these documents form a graph of over 300k documents and slightly 
over 3.3 million citations. The average number of citations to and 
from a node typically lies between 1 and 200 but there are a 
substantial number of cases with thousands of citations. Fig. 5 shows 
the detailed degree distribution. We loaded this full dataset into our 
setup running on a Dual-Core 2.4Ghz laptop with 4GB RAM, which 
took about 5 minutes of server startup time loading data and 
computing API values, and ended up using 1.2GB of RAM. Queries 
from the browser client typically finish in a couple of seconds (about 
15 seconds per search and UI recomputation and up to 3 seconds for 
subgraph computation) 

Here, we wanted to see if we could use DOI graphs to extract 
relevant context around legal cases. We decided that relevant cases 
would be oft-cited Supreme Court cases that match the initial 
keyword search and are in close proximity to the focus. The a priori 
interest (API) function for our legal graph examines node attributes 
and topology of the graph to assign higher interest to supreme court 
cases and cases with higher in-degree. The user interest (UI) function 
considers the score for that node on the search terms used when the 
legal analyst searched for a focal node. Users may directly 
manipulate the weights of the different components in the DOI 
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function by using sliders in the user interface. Finally, as no attribute 
information for edges exist, the edge interest function EI is constant. 
Even though none of the authors are legal experts, these choices for 
interestingness seem reasonable as a first test, though further user 
testing might lead to more refined DOI functions for this particular 
domain. In the next sections we highlight four different potential 
usage scenarios. 

4.1 Importance: Show me important cases related to 
my case of interest. 

DOI graphs are useful when analysts wish to find important nodes 
that are related to a specific focal node. In a legal context, this can be 
particularly useful when analysts are looking for important, oft-cited, 
Supreme Court cases relevant to their selected case. In this particular 
scenario, a legal analyst searched for court decisions that matched 
the keywords �religion AND discrimination�. Out of the search 
results, the analyst selected a decision from 1980, Miller v. Texas 
State Board of Barber Examiners. (annotated �Focus� in Fig. 4a). 
This case features a decision about whether or not an employee was 
fired due to �discrimination on account of race, color, religion, sex, 
or national origin�. As Fig. 4a illustrates, the contextual graph 

includes many other nodes that also feature the user�s searched 
keywords (nodes highlighted in blue). These user-matched nodes 
surround three relevant Supreme Court decisions: Johnson v. 
Railway Express (on the limitation period of filing a discrimination 
suit), Griggs v. Duke Power (on indirect discrimination by aptitude 
tests) and McDonnell Douglas v. Green. Especially this last case, an 
�early substantive ruling� on employee discrimination according to 
Wikipedia, is remarkable because this case is not directly connected 
to the original focus case, nor does this case match the user�s original 
keywords. Nonetheless, this case is brought to the users attention due 
to a priori interest function giving weight to often cited, high court 
cases in the context of the focal node. Without DOI, the subgraph of 
all cases two hops out would contain 2345 nodes and 2847 edges, 
would have a diameter of at most 5, and would be impractical to 
visualize using a node link diagram. 

Additionally, Fig. 4a shows how indicating high interest edges 
gives us valuable clues as to the direction in which we want to 
expand the graph. In Fig. 4a three edges are highlighted which all 
seem to point at a single position. After expanding the marked edges, 
we find two additional Supreme Court cases on discrimination. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a) Importance (b) Reasoning 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

(c) Overview (d) Relevance 

Fig. 4. Sample use cases and tasks. In (a) the user is looking for relevant cases on �religion + discrimination� that do not contain these search 
terms and might not be cited directly by the focal node. Three relevant supreme court cases are returned (b) shows how seemingly unrelated 
cases might connect two distinct clusters of relevant legal cases on abortion. (c) shows an overview of cases related to a search for 
�American flag�. Relevant clusters of cases can be identified by examining case details. (d) shows how the structure of a network might give 
clues on the relevance of a case. Here we selected a case containing the word �evolution�, but the actual cluster of cases related to evolution 
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4.2 Reasoning: Show me why this cited case is 
relevant to my case 

One complexity of interpreting the citation graph is that decisions 
often cite other decisions that may seemingly have nothing to do 
with the semantic content. Consider this case study example of an 
analyst searching for decisions involving the keywords, �abortion�. 
He arrives upon a potentially interesting case (Zhong v. US Dept of 
Justice; the focus in Fig. 4b) of a person attempting to receive 
asylum in the US due to the practice of forced abortion in his home 
country. The decision curiously cites a case about illegal stock 
manipulation (Chenery vs SEC, annotated �Financial Case�), which 
initially seems to have very little to do with a decision about 
abortion. This case, which never mentions the word �abortion�, is 
inside the DOI graph since it is the source node�s indirect neighbor 
and is a heavily cited Supreme Court case, while some of its 
neighbors matched the initial search term. Upon reading the full text 
of the document, a feature available in our system, the analyst reads 
the description of why this particular citation exists ("a judicial 
judgment cannot be made to do service for an administrative 
judgment�). However, this cryptic statement does not resolve the 
analysts concerns and he wants to figure out why this case is cited.  

Fortunately, DOI graphs are able to utilize this seemingly 
unrelated hub to search outward for additional abortion cases. In fact, 
two different decisions that match the user�s search of �abortion� also 
cite the stock manipulation case (in the group labelled �main abortion 
cluster in Fig. 4b). These new abortion cases are inside the DOI 
graph because they both matched the analyst�s keywords and have a 
highly cited Supreme Court case (the financial case) as neighbour. 
By examining the rulings of these new abortion cases in detail the 
analyst is able to conclude that the context for this citation is the 
extent to which government entities can interpret law and 
retroactively set rules. As an added bonus the analyst has discovered 
a separate cluster of rulings on abortion cases that are not directly 
connected to the main cluster. 

4.3 Overview: Show me an overview of this subfield 
DOI graphs can also be used to provide an overview of the context 
surrounding a node of interest. In this example, the legal analyst 
searched for all decisions involving the key words �American Flag�. 
Since the user is interested in seeing a range of cases involving 
American flags, the interest sliders are adjusted to give more 
preference to matched keywords and less interest to a priori 
attributes like in-degree and level of court. From the search results, 
the analyst selects a focus case (Troster v. Pennsylvania) about an 
employee who refused to wear a flag on his uniform. The resulting 
DOI graph (Fig. 4c), is a dense graph but by examining the cases in 
detail we can still identify a number of conceptual clusters. First, it 
clearly shows the source node�s connections to important Supreme 
Court decisions about American flags, including Texas v. Johnson 

(constitutionality of flag burning) and Spence v. State of Washington 
(constitutionality of displaying flags with superimposed images). 
Second, the DOI graph highlights a variety of other lower court flag-
cases not necessarily connected to the source, which deal with 
decisions that force students to salute flags, destroying flags for 
commercial purposes, and other cases of flag mutilation. However, 
on the other side of the graph, there are a variety of cases that have 
nothing to do with flags, but do revolve around the theme of the 
freedom to express oneself. So even though these decisions were not 
explicitly about flags, their arguments are critical to the flag cases. 
Even though we told the server to return a small 25 node context we 
can clearly group cases into relevant clusters. 

Log degree distribution
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4.4 Relevance: Show me if this case is what I think it is 
This last scenario is an example where DOI graphs can help you 
understand the relevance, or lack thereof, of your selected search 
node. A legal analyst conducted a search using the term �evolution� 
to discover decisions dealing with this biological theory. Similar to 
the previous scenario, the analyst adjusted the interest sliders to give 
more preference to matched keywords (UI), as the user was 
interested in cases about evolution. At the same time, less weight 
was given to the distance component of the DOI function. The 
analyst sorted the search results by date, and selects a recent case that 
is in the result list (Rockstead v. Crystal Lake). The resulting graph is 
quite peculiar, as the DOI graph brings in a cluster of �evolution�-
matched decisions (labeled �Evolution vs Creationism Cluster� in 
Fig. 4d), but they are 7 degrees away. Upon closer inspection, it 
seems the original source node has nothing to with the biological 
theory of Evolution, but instead the �evolution of common law�. The 
resulting picture made the analyst realize that the selected case had 
no �evolution�-based context in the legal graph, and that perhaps the 
selected case was not what the analyst was seeking after all. 

Fig. 5. Log-degree distribution of the case citation graph. Citation 
count includes both in and out citations. 

 
We have presented several stories of how DOI graphs allow analysts 
to dig through very large and dense citation graphs. Although this 
anecdotal evidence should obviously be confirmed through more 
rigorous evaluation techniques such as long-term field studies (e.g. 
[16]) with a broad field of actual experts, these initial explorations 
were encouraging. Without the use of interest functions to make 
these otherwise dense graphs legible, or using only the currently 
available textural search tools it is doubtful the analyst would have 
made some of the observations above. 

5 DISCUSSION & FUTURE WORK 
We have demonstrated how degree of interest can be used to 
effectively navigate large and highly connected graphs. However, 
there are still many outstanding challenges to support the analytical 
needs of users. Although we have chosen legal citations as data 
domain, there are many other data domains where this approach 
might be useful. In social network visualization, ego-centric views of 
the network are common and this approach fits well with that 
paradigm. Internet browsing could be enhanced by providing a user a 
local map around the visited page, using the user�s current 
information needs as input to an interest function.  

We assumed that the user selects a single node as the focus, but 
we can very well generalize these ideas to multiple foci. That is, if a 
user selects multiple nodes in the graph, can we show a fixed size 
interesting (and connected) subgraph containing these nodes? 
Running our localized greedy algorithm no longer guarantees 
connectedness, but approaches like [3] and [11] use the graph 
topology to generate network �summaries� that capture as much as 
much as possible of the basic proximity structure of the graph using 
a fixed node budget. We can directly integrate these techniques in 
our setup, or enhance them by taking node interest into account. 

In this paper, we have defined a general framework for interest 
functions but have been deliberately vague about their precise 
implementation. The actual choice of properties or metrics to use for 
DOI computation should depend on the task and data domain for 
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which the visualization is intended and it is unlikely that there is an 
optimal function that performs well for all domains and tasks. In our 
sample scenario we have used simple measures like the values of 
inherent attributes and local topology metrics for API and a keyword 
match percentage for UI. We could also choose an API function that 
uses global topological measurements relevant to users� tasks and 
domain. For instance, social network analysis metrics such as 
betweenness centrality would allow users to find bridge nodes more 
easily. PageRank-like algorithms would allow users to find hub 
nodes more easily. Although these metrics are generally expensive to 
compute, they only have to be computed once, at startup. In a similar 
manner, UI can be enhanced by reusing the history of interactions a 
user has performed on the current subgraph. Keeping track of 
common parameters of nodes selected as foci and nodes selected for 
expansion might help us make better decisions on the intent of the 
user, resulting in an adaptive DOI function and more relevant graphs.  

Finally, in our visualization we are currently only showing the 
immediate context of a node at the lowest level. This makes it hard 
for users to orient themselves in the full information space. One 
possible solution to explore is to annotate edges on the periphery of 
the visible graph with distances to landmark cases in the graph, much 
like road signs in real life.  

On the downside of this approach, the decisions made by the DOI 
based algorithms might seem abstract to the user at times. Looking 
for a specific citation between two cases can be problematic, as cases 
are brought in on a �most-interesting� basis. We can address this by 
including some of the textual approaches used in common legal 
analysis tools, and allow the user to also search for and expand 
connections to particular cases.  

Furthermore, with the most cited cases in the database having 
over 3600 citations, some of the heavily cited procedural cases are 
often included in the extracted DOI graphs, even though they might 
not be that interesting from a legal perspective. Fine tuning of the 
API function might be helpful in that regard. For example based on 
an examination of the degree distribution (Fig. 5) we can state that 
citation counts over 1600 do not add much to the information value 
and we cap the API interest level for those cases. Finally, our 
approach helps ameliorate some of the issues with rendering node 
link diagrams for dense graphs, but does not solve them completely, 
as is witnessed by Fig. 4c. Individual edges are still hard to follow in 
dense clusters and node link representations simply do not do a very 
good job in those cases. Possible solutions may include edge 
bundling [10] or including constraints on the maximum number of 
edges returned in the most interesting subgraph.  

6 CONCLUSION 
In this paper, we have shown that an adaptation of degree-of-interest 
functions to graphs helps manage the complexity of large and dense 
graphs. We advocate an additional term in the classic degree of 
interest function that captures the search for a focal node. We also 
introduced a method to diffuse interest over the entire graph to 
mitigate local minima. Concretely, we can use degree of interest to 
extract subgraphs from data residing on a centralized server and 
subsequently browse them on remote clients. On the interaction side 
we can use these same DOI functions to reduce the potential 
complexity introduced by very high degree nodes in the graph and 
simultaneously use it to visually indicate directions in which 
browsing might yield interesting results. In conclusion, we believe 
that an extension of the basic concept of degree of interest from tree 
to graphs offers promising ways to tackle the complexity of very 
large real world graphs and foresee a rich area for follow-up work. 
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