Zooids: Building Blocks for Swarm User Interfaces

Mathieu Le Goc, Lawrence H. Kim, Ali Parsaei, Jean-Daniel Fekete, Pierre Dragicevic, Sean Follmer
{mathieu.le-goc, pierre.dragicevic, jean-daniel.fekete}@inria.fr
{lawkim, aparsaei, sfollmer}@stanford.edu

A zooid or zoöid /ˈzoʊ.ɔɪd/ is a single animal that is part of a colonial animal. Zooids are multicellular; their structure is similar to that of other solitary animals.

**HW**: As shown right, each robot consists of PCB, battery, motors, wheels, touch sensor, enclosure, and caster wheels.

**SA**: The overall system consists of 4 layers and communicates with each other as shown above.

**CS**: The control procedure for our system consists of three steps:
1. Hungarian goal assignment (optional)
2. HRVO global control strategy (optional)
3. PID position control (as shown above)

**A**: An extra visual feedback
While Zooids can be used alone, when finer details are needed, zooids can be combined with other visual feedbacks such as paper or screen placed underneath.

**F**: Freehand Drawing
This is a swarm version of a freehand drawing tool. Initially, only the drawing zooid is placed in the center. Then, as the user moves the drawing zooid, the previously idle zooids fill the path. The curve can also be deformed physically by manually moving the zooids.

**S**: Shapes
Zooids can be used as tools for drawing lines, rectangles, and circles using the rubber band technique from desktop applications. Here, two zooids are used as control points to define the circle’s diameter, and idle zooids automatically position to complete the shape.

**E**: Extra Visual Feedback
While Zooids can be used alone, when finer details are needed, zooids can be combined with other visual feedbacks such as paper or screen placed underneath.

**R**: Resources available at: https://github.com/ShapeLab/SwarmUI

**V**: VLC Media Player for OS X

**S**: SWARM USER INTERFACE
“human-computer interface made of independent self-propelled elements that move collectively and react to user input”

**D**: DESIGN SPACE

**E**: EXAMPLE APPLICATIONS

**D**: DESIGN

**H**: Hardware
As shown right, each robot consists of PCB, battery, motors, wheels, touch sensor, enclosure, and caster wheels.

**S**: Software Architecture
The overall system consists of 4 layers and communicates with each other as shown above.

**C**: Control Strategy
The control procedure for our system consists of three steps:
1. Hungarian goal assignment (optional)
2. HRVO global control strategy (optional)
3. PID position control (as shown above)