
Building Progressive Visual
Analytics Systems with

ProgressiVis
Jean-Daniel Fekete jean-daniel.fekete@inria.fr

Christian Poli christian.poli@inria.fr

Nov. 3, 2025

mailto:jean-daniel.fekete@inria.fr
mailto:christian.poli@inria.fr

Exploring Big Data Today…

2

Examples

● Graph Layout algorithms are used in a
progressive way for years

● New applications are coming for
○ Exploring data instantaneously
○ Looking at high-dimensional data using

multidimensional projection
● Either:

○ Looking at data while it is downloaded
○ Looking at a data analysis while it is

computed
○ Looking at an ML algorithms while it learns

or when applied to data

3

4

Progressive Visualization and Visual Analytics

Download and Visualization
of 12.7B NYC Taxi Trips

t-SNE and Visualization of
4345 genes of 61k points

[Pezzoti et al. 16]

k-Means and Visualization
of 105K points

Progressive Data Analysis and Visualization: Why?

● Datasets continue to grow, taking time to load
● Algorithms that deal with them need more processing time
● But exploratory visualization needs a latency under ~5 seconds
● Faster machines are not solving the problem

○ Data grows faster
○ Algorithms still need more processing time
○ Networks have limited bandwidths

● Progressive Data Analysis and Visualization is a possible solution
○ But it comes with a few caveats

5

Benefits of Progressive Data Analysis and Visualization

● Scalability for visualization in terms of data size and download time
● Scalability for interactive analysis including machine learning
● Instant data, no need to wait for data and visualization to arrive
● Greener computing, processing only the required data to get a result
● Algorithmic transparency, monitoring algorithms while they process data

6

ProgressiVis

● A Toolkit for programming Progressive Data Analysis and Visualizations
● Instead of performing calculations in an unpredictable time
● ProgressiVis splits calculations in pieces

○ So each piece can provide an approximate result, every few seconds or so,
○ Improving with time
○ Until the whole calculation is finished
○ Or, at some point, the approximation is good enough to make a decision and stop

■ For that, calculations provide information about their quality
● All the calculations in ProgressiVis are done progressively!

7

Progressive Data Analysis Quality?

● PDA allows monitoring a long computation
○ The visualization is evolving over time

● When is the result is good enough?
● PDA computations have three phases:

○ Chaotic, no decision can be made,
uncertainty high, quality low

○ Converging, some decisions can be
made, uncertainty and quality medium

○ Converged, decisions can be made
accurately, uncertainty is low, quality is
high, waiting more is a waste of resources

● We use the word quality for a value that
increases when the results are better

● The real meaning depends on the context.

8

● Introduction to Progressive Data Analysis and Visualization
● Onboarding for Researchers who want to contribute to PDA-V

○ ProgressiVis is an enabler to facilitate research on PDA
○ Your contributions are welcome

● Understanding how to start contributing to the progressive roadmap without
having to rebuild everything from scratch

○ Data I/O Management
○ Data Structures
○ Algorithms including ML, AI, Layout
○ Visualizations
○ HCI including Interaction and UI

Not an introduction to a new full-fledged Python data analysis environment (yet)

Goal of this Tutorial

9

Progressive Data Analysis: What is It?

● A PDA guarantees that its latency remains under human cognitive limits (~10 s)
● When a progressive function is called

○ instead of returning one accurate result in unbounded time
○ It will return a series of approximate results, improving, each within a given latency,

along with an information on the progression and the quality of the result.
● Meanwhile, the system remains reactive and users can

○ Stop the computation if the approximation allows them to make a decision
○ Change some of the parameters of the computation to steer it

The PDA system should strive to remain as stable as possible to facilitate the monitoring of progress
● PDA trades time for quality with control
● Ideally, progressive "functions" can be composed to form a progressive pipeline
● But PDA introduces new issues:

○ Quality assessment and visualization
○ Stability of iterative results for visualization

Multidimensional Projection

● Visualization of high-dimensional data
using the t-SNE projection

● Anything can be transformed into
high-dimensional data nowadays

○ Text
○ Image
○ Video

● Exploring a large and complex dataset
with t-SNE is always insightful

● Loads data progressively
● Computes k-NN progressively
● Computes t-SNE progressively
● Visualizes the results progressively

11

12

Progressive k-means

13

Non-deterministic

Can be trapped in local minima

See it unfold and interact to test

Outline

● Installation
● What is Progressive Data Analysis?
● A Simple Program
● Variations of the Simple Program
● Summary of components and organization
● Interaction
● Progressive Notebooks
● Visualizations in the Notebook
● Internals of ProgressiVis
● Creating a new Module
● Creating a new Visualization
● Creating a new Loader
● Wrapping Up

14

Installation

● Connect to our pre-installed MyDocker system
○ URL

See https://progressivis.readthedocs.io

● Distribution: pip install progressivis
○ pip install 'progressivis[jupyter]'

● For this tutorial, install the tutorial files:
○ pip install jupytext matplotlib anywidget
○ git clone https://github.com/progressivis/progressivis-tutorial.git
○ cd progressivis-tutorial
○ sh sync.sh

15

https://progressivis.readthedocs.io
https://github.com/progressivis/progressivis-tutorial.git

Configuration of the Jupyter Env

● Disable "Autosave Documents"
● Enable "Save Widget State Automatically"
● Start the console
● Check the tutorial examples

16

ProgressiVis: New Execution Semantics
Jean-Daniel Fekete, Christian Poli, and Romain Primet
data = CSVLoader('bigfile.csv')
min = Min(data)
max = Max(data)

histo = Histogram2D(data, min, max)

sample = Sample(data, 500)

plot = Scatterplot(histo, sample, min, max)

show(plot)

17

Transform the Program into a Dataflow

Load
Dataset

Histogram2D

Random
Sample

Heatmap
Scatterplot

18

data = CSVLoader('bigfile.csv')

min = Min(data)

max = Max(data)

histo = Histogram2D(data, min, max)

sample = Sample(data, 500)

plot = Scatterplot(histo, sample, min, max)

show(plot)

Module

Connection

Max

Min

ProgressiVis: Splitting the Computation in Chunks

• Each module is given a quantum to run (0.5 s)

• At the end of its quantum, it should provide a useful result,
even if partial or approximate

• Modules are run in round-robin order until they reach the
end of their computation

• Additionally, interaction is possible to steer and modify
module parameters!

19

Running the Modules in Topological Order

Load
Dataset

Min Histogram2D
Random
Sample

Heatmap
Scatterplot

Iterate

20

Scheduler

Dataflow

 0.5s 0.5s 0.5s 0.5s 0.5s 0.5s

Load
Dataset

Histogram2D

Random
Sample

Heatmap
Scatterplot

Module
Max

Min

Max

Connection

Running the Modules: What Happens with Data?

21

Load
Dataset

Min Histogram2D
Random
Sample

Heatmap
Scatterplot

Max
CSV File

#1 Chunk #1
min
Chunk #1

max
Chunk #1

histogram2D
Chunk #1
Min value #1…

sample
Chunk #1

Heatmap
Chunk #1
Min values #1, …

Chunk
#1+#2

min
Chunk
#1+#2

max
Chunk
#1+#2

histogram2D
Chunk #1+#2

sample
Chunk #1+#2

Heatmap
Chunk #1+#2
Min values #1+#2, …

#2

Chunk
#1+#2+#3

min
Chunk
#1+#2+#3

max
Chunk
#1+#2+#3

histogram2D
Chunk
#1+#2+#3

sample
Chunk
#1+#2+#3

Heatmap
Chunk #1+#2+#3
Min values #1+#2+#3, …

#3

∆=+#1

∆=+#2

∆=+#3

Load
Dataset

Histogram2D

Random
Sample

Heatmap
Scatterplot

Max

Min

Table +
∆

Dict +
∆

Table +
∆

∆ = Creations
Deletions
Updates

ProgressiVis Core API

22

Simple Example using the Core API

23

1-low-level/userguide1.0.ipynb

Simple Example using the Core API

24

Simple Example using the Core API

● Line 8 creates the module CSVLoader
○ Same arguments than pandas.read_csv

● Line 10 creates the module Quantiles
○ Manages the quantiles of the quantitative columns

● Line 11 creates the module Histogram2D
○ Accumulates counts of two attributes on a matrix

● Line 13 creates the module Heatmap
○ Transforms the matrix into an image

● Line 16 connects the output of the CSVLoader to
the input of quantiles Quantiles

● Line 17-19 connects the input of the Histogram2D
to the output of the CSVLoader and Quantiles.
Note the quantiles parameters on lines 18-19.

● Line 20 connects the output of the Histogram2D to
the input of the Heatmap

● Line 23 starts the scheduler to run the program
● csv.scheduler.task_stop() will stop the

scheduler
25

Summary of the Simple Example

● A program is made of modules
● Connected to form a dataflow
● Underneath, a connection is done with a Slot
● The program is run by a scheduler
● What data is flowing in a connection Slot?

○ Tabular data: PTable
○ Dictionary data: PDict
○ IntSet: PIntSet
○ They need internal support, explained later

Look at the example on the right and identify the
components, notations, and slot types

Connections can also have parameters "slot hints"

While the program runs, you can look at the module
attributes live.

26

1-low-level/Summary.ipynb

Variation 1 of the Simple Example: Simpler is not Better

27

1-low-level/userguide1.1.ipynb

Variation 2 of the Simple Example: Extra Information Helps

28

1-low-level/userguide1.2.ipynb

Return to Simple Example using the Core API

Special care is needed to deal with big data:

● The Quantiles module computes min and
max corresponding to the 0.03/0.97
quantiles (line 18-19) to avoid outliers

● Big data can always have outliers
● The syntax with brackets at the end of the

connection is called a "slot hint"
○ It provides parameters to the connection
○ Here, the desired quantile in [0,1]
○ For a PTable slot, the desired columns

29

Continuing a Progressive Data Analysis

● Running the simplest program did not work because of the outliers
● How can we fix it, or continue the analysis with other modules?

○ Perform more computations
○ Show more visualizations

● We need to change the scheduler's Dataflow
○ But it needs to remain valid

● We use a Python "context manager"
● It checks before committing the changes
with scheduler as dataflow:
 # create and remove modules here
 # add connections
The new dataflow is tested here
And added to the scheduler if valid

30

1-low-level/userguide1.1.ipynb

Dataflow Management and Validity

To run, a ProgressiVis program should be valid.

● The input and output slots should be type-compatible
● All the modules' required slots should be connected
● There should not be any cycle in the dataflow; it should be a directed acyclic

graph (DAG)
● ProgressiVis checks the connection types when the connection is specified
● However, when building or modifying a dataflow graph, adding modules or removing

modules, the dataflow graph remains invalid until all the connections are made and
dependent modules are deleted from the dataflow.

● Deleting a module can trigger a cascade of deletions
● Checking the required slots and cycles is done using a Python context manager

31

1-low-level/userguide1.6.ipynb

Adding, Removing, and Connecting Modules

1. Build the Program 2. Incrementally Update It

32

1-low-level/userguide1.6.ipynb

Dataflow Management and Validity

● Modules can be added and removed
● But the program should be valid:

○ Slot types should match
○ Required slots should be connected
○ The module graph should not have cycles

LARGE_TAXI_FILE = ...

csv = CSVLoader(
 LARGE_TAXI_FILE,
 usecols=[
 'Pickup_longitude',
 'Pickup_latitude'
])
m = Min(name="min")
prt = Tick(tick='.')
m.input.table = csv.output.result
prt.input.df = m.output.result
csv.scheduler.task_start()

To add modules:

with csv.scheduler as dataflow:
 M = Max(name="max")
 prt2 = Tick(tick='/')
 M.input.table = csv.output.result
 prt2.input.df = M.output.result

And to remove modules:

with csv.scheduler as dataflow:
 deps = dataflow.collateral_damage("min")
 print("The collateral damage of "

 "deleting min is:", deps)
 dataflow.delete_modules(*deps)

33

1-low-level/userguide1.5.ipynb

Summary of components and organization

Components so far:

● Module
● Scheduler
● Slot
● Data
● More to come:

○ Dataflow
○ Widgets

Modules so far:

● IO:
○ CSVLoader
○ Print, ConstDict

● Visualization:
○ Heatmap

● Stats:
○ Quantiles
○ Min / Max

● Table:
○ RandomPTable

● More to come:
○ core, linalg, cluster and ipyprogressivis

34

Modules API (so far)
● Core

○ Sink
○ Wait

● Io
○ CSVLoader [several]
○ ParquetLoader
○ ArrowBatchLoader
○ Every, Print, Tick
○ Variable

● Stats
○ Min, Max
○ Var, Std
○ Counter, Distinct
○ Histogram1D, Histogram2D, MCHistogram2D
○ Corr
○ Sample
○ Quantiles
○ PPCA
○ RandomPTable
○ KLLSketch
○ KernelDensity
○ TSNE

● Table
○ Constant, ConstDict
○ Aggregate
○ Index [several]
○ Binary operators
○ CategoricalQuery
○ CombineFirst
○ Filter [several]
○ GroupBy
○ Intersection
○ Join [several]
○ Merge
○ RangeQuery [several]
○ Reduce
○ Select

● Vis
○ Heatmap
○ MCScatterPlot
○ AnyVega

● Linalg
● Cluster

○ MBKMeans

35

● Modules expose attributes:
○ name, input, output, params, scheduler, tags, state

● Methods:
○ get_progress(), get_quality()
○ Heatmap -> get_image_bin()

● They also expose callbacks
○ on_start_run
○ on_after_run
○ on_ending

See the communication with the Notebook to display the heatmap being updated.

Communication with Modules

36

Back to the Simple Example using the Core API

37

1-low-level/userguide1.0.ipynb

Adding a callback to show a Heatmap

1. Create a widget Image with no content
2. Display the widget
3. Register a callback to the Heatmap
4. After each run

Change the image with the new one

38

Adding a callback to show a Heatmap

1. Create a widget Image with no content
2. Display the widget
3. Register a callback to the Heatmap
4. After each run

Change the image with the new one

In reality, the updates should be slowed down to
avoid flooding the front end. Every 3-5 seconds.

39

Progression and Quality

● ProgressiVis allows tracking the
progression and quality of modules

● Module.get_progress returns a
couple of value: (current, max)

○ The unit is number of items
○ Both can vary over time

● Module.get_quality returns a
dictionary of names and floating point
values. The higher, the better.

● Both can be visualized with a callback
Module.on_after_run

40

1-low-level/userguide1.4.ipynb

Interaction: the Variable module

● The "Variable" module simply forwards the message it receives using the
Module.from_input(msg: Dict[str, Any])method to its output slot
as a PDict

● Other modules can interpret the message in specific ways
● For interactive programs, a jupyter notebook widget can create the message

in its callback
● When from_input is called, the scheduler assumes the interaction should

be fast and optimizes temporarily the dataflow, only running a minimum set of
modules

41

Interaction: the Variable module

42

1-low-level/userguide1.3.ipynb

Interaction: from_input() and the Variable module

43

Interact on
those

Control with Widgets

● Line 11-12 set the current min/max values
● Two FloatRangeSlider widgets are

created for longitude and latitude lines 14
and 26

● An observer function is called when the
widgets change and update the variables
using the Module.from_input method.

● The observer is attached to the widget on
line 45-46

● The widgets are displayed on line 47

See https://ipywidgets.readthedocs.io/ for
informations on the Jupyter Lab widgets

44

https://ipywidgets.readthedocs.io/

Adjusting the Viewport

● Create range filters for lat and long
● Specify the min/max for the histogram2d
● Connect modules to widgets

Showing a progress bar and a quality
visualization is possible too, but the code
becomes long!

See 1-low-level/userguide1.3.ipynb

For simple cases, we offer a simpler interface.

45

https://docs.google.com/file/d/1H2u6yM0aA6R1g0NkCOrBduzolkKo1k8m/preview

Core API Summary

● Many new concepts
○ Module
○ Connections through typed slots
○ Scheduler
○ Dataflow
○ Progression Module.get_progress()
○ Quality Module.get_quality()
○ Callbacks

● Three types of data (so far):
○ PTable -> like a DataFrame, a dictionary of typed columns
○ PDict -> a dictionary associating a key (string) to a value
○ PIntSet -> a set of integers, from 0 to 2^32-1 (4 Billions)

46

Progressive Notebooks

47

Progressive Notebooks

● The best environment to use ProgressiVis is the Jupyter lab notebook with
extensions supported in the python package called ipyprogressivis.

● It provides:
○ Chained widgets to avoid the boilerplate code seen with the core API

■ Create progressive pipelines interactively
○ A side visualization pane to navigate between active cells (DAG widget)
○ A control panel with a graph visualization of the running modules
○ Recording progressive scenarios and replaying them
○ Improved rendering when a previously developed scenario is reopened

● A Progressive Notebook is created using the ProgressiBook extension:

48

Progressive Notebooks

● A starting box
appears

● A scenario is
usually made of
a loader, with
processing and
visualizations

● Clicking on the button provides a guided
list of possible chaining widgets

● It provides guidance in the creation of a
scenario

● A saved scenario can be replayed

● The Simple Example using the Taxi
Dataset is easy to reproduce

● It comes with a few enhancements

DAG Widget

49

50

D
A

G
 W

idget
C

ontrol P
ane

Comments on the DAG Widget

Goals and usage

● Visualizes the topology of the progressive dataflow
● Shows the state of the Chaining Widgets with colors
● Allows non-linear navigation on the notebook

○ To visit cells that continue to work
● The name can be specified at the creation of the widget
● The color indicates the state of the Chaining Widgets

○ White: Not started
○ Pink: Error during the execution
○ Blue: Running

51

52

Inspecting the Running Modules Stop button

53

Inspecting the Running Modules Graph

54

Control Panel with Module Graph

Simple Example Revisited

Let's see how to load the Taxi Dataset

The URL is:

https://www.aviz.fr/nyc-taxi/yellow_tripdata_2015-01.csv.bz2

1. Create a new ProgressiBook
2. Create a CSVLoader with the specified

URL
3. Explore the CSVSniffer

a. Heavyweight interactive component
4. Chain the loader to the Quantiles

a. See the parameters
5. Chain the Quantiles to the Heatmap

a. See the parameters

55

https://www.aviz.fr/nyc-taxi/yellow_tripdata_2015-01.csv.bz2

56

Building the Taxi Scenario

https://docs.google.com/file/d/1QsoSO-E6x6zPl2mmG4N07EovANwH8uHC/preview

Chaining Widget List

● Data Loaders: CSV with the Sniffer, Parquet, Custom
● Table operators: Group By, Aggregate, Join, View (computed columns)
● Free coding: Snippet
● Display: Dump table, Descriptive stats, Heatmap, MultiSeries, Any Vega

57

Free Coding: Snippets

● a widget that lets you insert custom code into a Chaining Widget topology.
● the first line of the cell must begin with the comment # progressivis-snippet
● The user code is connected with a function with the following signature:

@register_snippet

def my_function_name(input_module: Module, input_slot: str, columns: list[str]) -> SnippetReturn | None:

 ... # the typing is optional but recommended

● Check the documentation for more details
https://progressivis.readthedocs.io/en/latest/notebooks.html#free-coding-category

● See the two scenarios
https://progressivis.readthedocs.io/en/latest/gallery.html#a-scenario-using-progressivis-
snippets

58

https://progressivis.readthedocs.io/en/latest/notebooks.html#free-coding-category
https://progressivis.readthedocs.io/en/latest/gallery.html#a-scenario-using-progressivis-snippets
https://progressivis.readthedocs.io/en/latest/gallery.html#a-scenario-using-progressivis-snippets

Progressive Notebooks Saving and Replaying

● Recording a scenario
○ check the box when starting, and save the

notebook
● Replay a scenario

○ Run it, then choose to Replay all or Step
by step

● Replay in read-only or rewrite mode?
○ Step by step can be rewritten

● Unfortunately, the recorded Progressive
Notebooks are not always self explanatory

● Widget states are stored internally and not
exposed, this is a limitation of notebooks

59

Complete Scenario: Analyzing NYC Taxis when it Rains

Let's imagine this scenario

● In 2015, a New York Times journalist receives complains that there are less
taxis when it rains in NYC

● She wants to check if this is true quickly
● She builds a progressive pipeline:

○ Load weather report with daily precipitation in NYC (check the weird format with the sniffer)
○ Load the taxi dataset for 2015
○ Aggregate taxis by day
○ Join them by day and aggregate the taxi trip count-> each days has a precipitation
○ Compute the correlation between precipitation and taxi count

● See notebooks/trip_rain_corr.ipynb

60

Loading the weather file (see https://github.com/zonination/weather-us)

61

https://github.com/zonination/weather-us

62

https://docs.google.com/file/d/156U0_3jCQxc-pMTjvYBZ6R4bDAhT2je3/preview

Joining Tables

The smallest is usually the primary!

63

Progressive Notebooks Summary

● Simple analyses are easy to do
● Several supporting tools to monitor the program and specify parameters
● Can be saved and run again
● Not so great to understand how they work, many details are hidden in widgets
● Still a few glitches, the DAG Widget and control panels should be closed to

avoid clashes…
● All the widgets can be reused in normal notebooks!

64

Internals of ProgressiVis

● Basic principles
○ Cooperative scheduling
○ Time predictor
○ Data updates and Reset
○ Atomic update of the Scheduler Dataflow

● Scheduler / Dataflow
● Module
● Slot
● Data structures

○ PTable, PDict, PIntSet
○ ChangeManager / Delta

● Widgets
● Visualizations

65

Basic Principles of ProgressiVis

● Building a Progressive Dataflow
● Cooperative scheduling
● Time predictor
● Data updates and Reset
● Atomic update of the Scheduler Dataflow

66

Back to the Simple Example
data = CSVLoader('bigfile.csv')
min = Min(data)
max = Max(data)
histo = Histogram2D(data, min, max)
sample = Sample(data, 500)
plot = Scatterplot(histo, sample, min, max)
show(plot)

67

Transform a Program into a Dataflow

Load
Dataset

Histogram2D

Random
Sample

Heatmap
Scatterplot

68

data = CSVLoader('bigfile.csv')

min = Min(data)

max = Max(data)

histo = Histogram2D(data, min, max)

sample = Sample(data, 500)

plot = Scatterplot(histo, sample, min, max)

show(plot)

Module

Slot

Max

Min

Running the Modules in Topological Order

Load
Dataset

Min Histogram2D
Random
Sample

Heatmap
Scatterplot

Iterate

69

Scheduler

Dataflow

 0.5s 0.5s 0.5s 0.5s 0.5s 0.5s

Load
Dataset

Histogram2D

Random
Sample

Heatmap
Scatterplot

Module
Max

Min

Max

Slot

Running the Progressive Program

• Modules are run by the Scheduler in round-robin order, several times until
the end of their computation

• The Scheduler tests each module with is_ready and, if True, calls run
given a quantum (0.5 s by default, specified as a Module's parameter)

• At the end of its quantum, the module should provide a useful result, even
if partial or approximate

• Cooperative scheduling means the module should return voluntarily!

• The scheduler removes terminated modules each time it reaches the end

70

Scheduler Load
Dataset

Min Histogram2D
Random
Sample

Heatmap
Scatterplot

Iterate

 0.5s 0.5s 0.5s 0.5s 0.5s 0.5s

Max

The Module SimpleMax

● Computes the max value for all the PTable
columns of its input table

● Returns a PDict with the column names as
keys and max value as values

71

3-module-creation/small_csv_loader-v1.py

Running the Modules: What Happens with Data?

72

Load
Dataset

Min Histogram2D
Random
Sample

Heatmap
Scatterplot

Max
CSV File

#1 Chunk #1
min
Chunk #1

max
Chunk #1

histogram2D
Chunk #1
Min value #1…

sample
Chunk #1

Heatmap
Chunk #1
Min values #1, …

Chunk
#1+#2

min
Chunk
#1+#2

max
Chunk
#1+#2

histogram2D
Chunk #1+#2

sample
Chunk #1+#2

Heatmap
Chunk #1+#2
Min values #1+#2, …

#2

Chunk
#1+#2+#3

min
Chunk
#1+#2+#3

max
Chunk
#1+#2+#3

histogram2D
Chunk
#1+#2+#3

sample
Chunk
#1+#2+#3

Heatmap
Chunk #1+#2+#3
Min values #1+#2+#3, …

#3

∆=+#1

∆=+#2

∆=+#3

Load
Dataset

Histogram2D

Random
Sample

Heatmap
Scatterplot

Max

Min

Table +
∆

Dict +
∆

Table +
∆

∆ = Creations
Deletions
Updates

The Module Interface
class Module:
 name: str
 input: InputSlots
 output: OutputSlots
 params: Dict[str, Any]
 scheduler: Scheduler

 tags: Set[str]
 default_step_size: int = 100
 state: ModuleState

 def describe(self) -> None:
 def get_progress(self) -> Tuple[int, int]:
 def get_quality(self) -> Dict[str, float] | None:
 def get_data(self, name: str, hint: Any = None) -> Any:
 async def from_input(
 self, msg: D ict[str, Any], stop_iter: bool = False
) -> str:

 def is_ready(self) -> bool:
 def run(self, run_number: int) -> None:
 def run_step(
 self, run_number: int, step_size: int, quantum: float
) -> ReturnRunStep:
 def last_update(self) -> int:
 def last_time(self) -> float:

 def suspend(self) -> None:
 def resume(self) -> None:

 def on_start_run(self, proc: ModuleProc, remove: bool = False) -> None:
 def on_after_run(self, proc: ModuleProc, remove: bool = False) -> None:
 def on_ending(self, proc: ModuleCb, remove: bool = False) -> None:

73

class ModuleState(IntEnum):
 state_created = 0
 state_ready = 1
 state_running = 2
 state_blocked = 3
 state_suspended = 4
 state_zombie = 5
 state_terminated = 6
 state_invalid = 7

class ReturnRunStep(NamedTuple):
 next_state: ModuleState
 steps_run: int

Defining a new Module: SimpleMax

● Define
○ Inputs
○ Outputs
○ Parameters

● Implement the method run_step
● When it makes sense, implement the

method get_quality

● The SimpleMax Module defines
○ An input slot "table" that takes a PTable or

derived
○ An output slot "result" that returns a PDict,

for each column of the PTable, it
associates the "max" value computed so
far

○ No specific parameter
● The run_step maintains the max value

when receiving new chunks
○ But if the table is modified, it has deleted

items or updated, items, the module will
reset and restart from scratch

● The get_quality is very easy to do here

74

Unpacking the SimpleMax Module (1)

75

● Python decorators to shorten the code
● Declaration of input slots, outputs, and

parameters, with their type and doc
● The main method is "run_step" line 19
● When the method is called, the table has

changed since the last run
○ With rows created, updated, or deleted

● If we had rows updated or deleted:
○ reset is called
○ and everything becomes "created" again

● Otherwise, there are only created items
● The chunk max is computed line 33
● The result is created on l. 36 or updated 38-39

3-module-creation/small_csv_loader-v1.py

The Module.run_step Method
def run_step(
 self, run_number: int, step_size: int, quantum: float
) -> ReturnRunStep:

● Parameters:
○ run_number: a unique number, increased

each time the scheduler runs a module
○ step_size: the number of "steps" the

method should run to stay within its
quantum

○ quantum: the specified quantum for this
module

● Return value: a pair of values
○ the state of the module after running and
○ the number of steps actually run by the

module

● Structure of the method:
a. Check for changes in the input slots, using

the deltas returned by the slots
b. Perform the computation abiding by the

"step_size" argument
c. Store the results in the output slots
d. Return the new state of the module and

the number of steps really done
■ Inform the scheduler if the module

should die (zombie) or not
■ If it needs data from previous

modules (blocked) or not (ready)
■ Of the work done to update the

module speed in the Time Predictor

76

Unpacking the Max Module (2): Time Prediction

● The arguments of run_step?
○ run_number: scheduler iteration number
○ step_size: number of "steps" to perform
○ quantum: the quantum
○ Should return a Named Pair

("next_state": …, "steps_run": …)
● Time prediction and step_size?

○ How many items can be handled in 0.5 s?
○ If 10,000 items are handled in 0.1 s …

● The Module monitors the run time and the
steps run and update the module speed.

● The unit of the "step" is up to the module,
but usually # of items to process

77

3-module-creation/simple_max-v1.py

Unpacking the Max Module (3): Change Management

● Progressive data structures track their changes
○ The CSV loader adds new lines
○ The table has "created" items for each new line
○ Using a PIntSet (super efficient data structure

called a RoaringBitmap)
○ When filtering the table, the module will also

receive "deleted" items
○ When changing the content of the table, the

module will receive "updated" items
○ Slot Delta: 3 IntSet: created, updated, deleted,

similar to a SQL trigger
● Line 29 reads the indices of the next "step_size"

created items (a IntSet), can be a slice too
● Line 30 takes its length
● Line 31 retrieves the chunk table and

Computes its max
● Line 36 builds the output PDict the first time
● Line 38-39 update it later, carefully

78

∆ = Created
 Updated
 Deleted

3-module-creation/simple_max-v1.py

https://roaringbitmap.org/

Unpacking the Max Module (4): State Management
● The module has a state
● Typically ready, blocked, or terminated

○ When ready, Module.is_ready()
returns True immediately

○ When blocked, it checks all the input slots.
If there are changes, it returns True

○ Otherwise it returns False
● At the end, two values are returned from

run_step :
○ The next state
○ The number of steps actually run, used by

the Time Predictor to adjust
● Here, the next step depends on the delta

of the input slot
○ If there are still values left in the delta, it

returns "ready"
○ Otherwise, "blocked"

● The module will terminate when its inputs
are terminated and it is blocked 79

3-module-creation/simple_max-v1.py

Improve with decorators and tailored methods

80

Monitoring Module Quality

● Some modules can provide a meaningful
quality

○ Higher value means better quality
● Some cannot, only progress
● What is a quality?

○ Depends on the module semantics
● For mean, can be the CI?
● For Max, we use stability instead of a

statistical measures
○ |prev_value - cur_value|

● Particular algorithms come with their own
quality measures

○ We use them, or others (stability) for speed

● What would be the quality for max?
● The max value itself!
● If it grows, the quality improves
● When it plateau, the quality stabilizes,

possibly converges

81

Summary: Creating a Module

● The bulk of ProgressiVis processing lies in
the Module.run_step method

● First, it checks what changed
● If it cannot deal with deleted or updated

items, it resets the module
● It then computes its partial result taking

into account the number of steps given
● It then updates the result slots, and
● Returns two values: the next state and

number of items processed
● Any exception will terminate the module.

● Using decorators shorten the code and
makes it more readable

● Several methods from the Module class
are meant to simplify the coding

● When implementing a module, main
issues are

○ Performance
○ Avoiding to reset the module if possible
○ Stability sometimes

● Quiz: can you think of a way to avoid the
Max module from always resetting on
delete/update?

82

Progressive Visualizations

● Using existing visualizations
○ Heatmap
○ Multiclass Scatterplot
○ Using Vega Lite

● Creating a new visualization
○ The module
○ The Widget

■ The back end in Python
■ The front end in JavaScript
■ Sending big data (don't but…)

● Adding Interaction

83

Multiclass Scatterplot

84

4-visualization-creation/MulticlassScatterplotDemo.ipynb

The AnyVega Widget

● Uses Vega-Lite and its "streaming" mode
● Takes a table in input, with a templated Vega-Lite configuration
● Visualizes the whole table each time it is updated

○ WARNING: don't send a large table
● Useful for already aggregated data
● For example, bar chart of NYC taxis per Borough

85

86

https://docs.google.com/file/d/1ih6XY3O4UahabcXbH6Ywwj-Jk2UQeKtq/preview

Implementing a Progressive Visualization in Jupyter Lab

● Jupyter Lab connects a Python interpreter to a web browser using a shared
bidirectional data stream

● There is a standard architecture to design widgets
○ One python class, two JS classes
○ Sharing data attributes automatically using the "traitlets" python package

● On top, ProgressiVis may need to implement partial updates
○ It uses a standard "send event" mechanism of jupyter widgets

● The initial mechanics is a bit heavy, but once in place, it's just JS!
● Try starting with AnyWidget: https://anywidget.dev/, launching it with

ANYWIDGET_HMR=1 jupyter lab

87

https://anywidget.dev/

Implementing a Simple Image Widget

Changes consist in replacing the image

88

4-visualization-creation/AnyWidget-Image.ipynb

Improving the Simple Image Widget

● The widget can also manage events from
the browser to Python, with event listeners

● The Python side can add a callback to
changes in the variable "scale"

● For more sophisticated operations, the
widget can manage custom events by
adding:

 this.model.on("msg:custom", (ev) => {
 if (ev.type != "update") {
 return;
 }
 do_something(ev.timestamp, ev.measures);
 });

89

Summary

90

● ProgressiVis provides a few visualizations techniques
○ Heatmap, MultiClass Density Map, AnyVega

● More can be built using IPyWidgets
○ With various levels of complexity

● More research would be useful to have a progressive Grammar of Graphics
● Meanwhile, ad-hoc visualization techniques can be implemented with

reasonable efforts

Implementing a Data Loader

91

Implementing a Loader Module: Simple Case

● A loader module is always ready until it terminates
● CSV Loaders can take a list of file names as input but, usually, they take an

URL as argument, sometimes with wildcards e.g., foo.com/*.csv
● They need to split the input in chunks and read them in as a PTable
● They also need to provide an information about their "progress"

92

http://foo.com/*.csv

Small CSV Loader

93

5-loader-creation/small_csv_loader-v1.py

Small CSV Loader (2)

● Use Pandas to read CSV efficiently
● Pandas.read_csv creates a iterative

parser with the keyword "chunksize"
● We allow all the keywords of

Pandas.csv_read except "index_col" and
"nrows"

● The scheduler wants to know if at least
one module provides data without an input
with Module.is_data_input() so it can stop
if everything is blocked

94

5-loader-creation/small_csv_loader-v1.py

Small CSV Loader (3)

● Nothing fancy in run_step, no input slot
● The column names should be valid in the

DataFrame -> force_valid_columns
● Our types use the "DataShape" syntax:

{col-name: col-type, …}
● {name: string, age: int, height: float}
● parser.read raises a StopIteration

exception when it is done

95

5-loader-creation/small_csv_loader-v1.py

Small CSV Loader (4)

● To monitor the progressive loading, we
need a measure of the progress, returned
as a pair (current_pos, max_pos) by
Module.get_progress()

● This is tricky to get, we need to open the
engine of Pandas.read_csv

● We can read the raw stream length L but it
can be compressed

● We can read chunks and monitor the table
length N -> current_pos

● We can read the position in the raw
stream (# of bytes read) M

● We assume M/L = current_pos/max_pos

96

5-loader-creation/small_csv_loader-v1.py

Implementing a Loader Module: Efficient Case

● A simple loader runs for a short time (quantum) once in a while, which limits
its throughput

● Use a thread to load, especially with Python >= 3.13
○ Load iteratively chunks slightly faster than the module quantum to make sure at least 1 is

loaded when the module calls run_step
○ Add the chunks in a thread-safe Python Queue using Queue.put()
○ In run_step , pop all the chunks and add them to the output Table

● Use the Module.on_ending callback to terminate the thread if the module
is deleted before loading is completed

97

Data Loader Summary

● Reading data progressively is not technically hard usually
● But some formats are not always appropriate
● Apache Arrow and Parquet files could be perfect or unusable

○ The are organized in columns and can be chunked or not
○ If not chunked, the whole table needs to be read, possibly blocking

● The main issue is to convince the world to split their files in chunks
● And provide a shuffled version, for better convergence in progressive

algorithms

98

ProgressiVis Tutorial Summary

● ProgressiVis provides all the mechanisms to run progressive programs,
monitoring the progress, and the quality

● It can be used as basis for development of progressive solutions:
○ Visualizations, Data structures, Loaders, Algorithms

● It could save you time and efforts to create progressive solutions
○ Scalability for visualization in terms of data size and download time
○ Scalability for interactive analysis including machine learning
○ Instant data, no need to wait for data and visualization to arrive
○ Greener computing, processing only the required data to get a result
○ Algorithmic transparency, monitoring an algorithm while it processes data

● Contact us for feedback and clarifications, we want to help the community!

99

ProgressiVis Needs You!

● We need to enrich ProgressiVis to become a complete environment
● There are many possible improvements:

○ Performance, it needs optimizations
■ With Python 3.14, using threads efficiently becomes possible

○ More data structures, such as graphs, trees, and 3D structures
○ More loaders and progressive databases connectors
○ More Visualizations, 2D and 3D

■ Progressive Grammar of Graphics?
○ More algorithms, possibly using Data Sketches, and Online Machine Learning

● Contact us if you want to use ProgressiVis for your research or applications
● Jean-Daniel.Fekete@inria.fr Christian.Poli@inria.fr

100

mailto:Jean-Daniel.Fekete@inria.fr
mailto:Christian.Poli@inria.fr

