
Gliimpse: Animating from Markup Code to Rendered
Documents and Vice Versa

Pierre Dragicevic1

1INRIA
F-91405 Orsay, France

dragice@lri.fr

Stéphane Huot2,1

2LRI - Univ. Paris-Sud & CNRS
F-91405 Orsay, France

huot@lri.fr

Fanny Chevalier

OCAD University
Toronto, Canada

fchevalier@ocad.ca

Figure 1: Detail of an animation between this article and its source code.

ABSTRACT
We present a quick preview technique that smoothly tran-
sitions between document markup code and its visual ren-
dering. This technique allows users to regularly check the
code they are editing in-place, without leaving the text edi-
tor. This method can complement classical preview windows
by offering rapid overviews of code-to-document mappings
and leaving more screen real-estate. We discuss the design
and implementation of our technique.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General terms: Design, Human Factors.

Keywords: Document editing, Animation, Markup code.

INTRODUCTION
Despite the popularity of WYSIWYG editors, authoring and
editing styled documents using markup languages such as
LATEX and HTML is a widespread practice among computer
literates and has recently been democratized by Wikis. Mark-
up languages are widely used and advocated because they
provide a clean separation between content and form, with
benefits in terms of maintenability, portability, visual consis-
tency, predictability, expressive power and expert user per-
formance [9]. Some users also find it easier to focus on the
content without having to deal with the form — or even with-
out having to see the form, as exemplified by the recent pop-
ularity of “dark room” word processors [4].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’11, October 16-19, 2011, Santa Barbara, CA, USA.
Copyright 2011 ACM 978-1-4503-0716-1/11/10...$10.00.

One difficulty with markup code is that, although it is human-
readable, users cannot always predict the results with accu-
racy and need to regularly check if it is correct and produces
expected results. This typically requires a series of actions to
re-render the document and display it in a separate environ-
ment from the text editor. This causes disruptions of the edit-
ing flow that can be daunting to beginners who need to con-
tinuously check their code and sometimes search for com-
mands by trial-and-error. Even the most experienced users
occasionally need to check commands they are unsure about
and having to switch from the domain object (e.g., an article
being written) to the tools (a markup interpreter or document
viewer) [3] may cause them to lose their train of thought.

A great deal of effort has been spent in text editing envi-
ronments to address these issues. Markup editors help users
write correct code from the start by providing tools such as
syntax highlighting and auto-completion. Since these tools
will never eliminate the need for checking the final docu-
ment, many efforts have also been spent at improving the
document preview workflow. Most editing environments
now provide shortcuts for re-rendering and refreshing the
document into the viewer. Some of them further support ren-
dering on-the-fly, and sometimes WYSIWYG selection and/or
editing. Although these tools dramatically improved the
usability of document markup languages, they still require
users to deal with two separate windows.

In this article, we present an alternative, in-place document
preview approach called Gliimpse. This technique lets users
quickly “glimpse” into the rendered document by having the
markup code smoothly transition to the rendered document
upon a hot key press. It is based on the observation that
markup code bears visual similarities with the document it
produces, making it a good candidate for animated transi-
tions [16, 7, 8]. Animated transitions have unique features
that can potentially make them a useful complement to exist-
ing document markup editing tools. They are:

• Implicit. Users do not have to explicitly select the pieces
of code or regions in the document they are interested in
as in synchronized views: they only have to follow them
visually during animated transitions.

• Contextual. Animated transitions provide context on re-
gions that are not of immediate interest to users, and thus
can possibly help them by giving quick overviews of where
things go from the code to the document and providing op-
portunities for incidental discoveries (e.g., spotting a mis-
take elsewhere). The explanatory power of animations
might further help beginners learn a new markup language.

• Concise. When the animation is invoked as a quasi-mode
like in Gliimpse (using a hot key), users can quickly check
the results of a formatting command they are unsure about
and immediately come back to the code (the only bottle-
neck being rendering time). Our animations are fast but
smooth enough to let users follow objects of interest and/or
build a quick mental map of where pieces of code end up
in the final document.

• In-place. The document is shown within the text editor it-
self, which saves screen real-estate and makes it possible to
display more content relevant to the writing task. Gliimpse
additionally uses a visual stabilization algorithm that tries
to have the region of code currently edited stay in place.

After providing a brief overview of related work, we describe
the basic features of Gliimpse. We then go into more details
on the design and implementation issues behind our tech-
nique and finally discuss possible future work.

RELATED WORK
Gliimpse is related to two bodies of work: document editing
and animated transitions. We briefly review them here.

Document Editing
Document markup languages and WYSIWYG systems are
two approaches for editing documents, each with their own
advantages and drawbacks. There has been a lot of effort in
developing tools that combine the benefits of the two.

Examples of such efforts are integrated editing environments
that combine a markup language editor with a WYSIWYG
view. This idea was first introduced with the Lilac document
editor [5]. Current examples include Dreamweaver and Fire-
bug for HTML, and Instant Preview and Whizzy-TEX for
TEX. These tools typically support synchronized highlight-
ing (hovering an element in one view highlights the corre-
sponding element in the other) and in some cases synchro-
nized editing (changes in one view are reflected in the other).
Such tools have been proved very valuable but since the use
of two windows might sometimes come with disadvantages
— for one thing, two windows take more screen real-estate
than one — single-view approaches have also been explored.

Single-view preview approaches are either markup-oriented
or WYSIWYG-oriented. Markup-oriented ones include text
editors with WYSIWYG display features like WikEd, LyX
and X-Symbol [12]. These pre-render symbol commands
(e.g., displaying \int as

∫
) or use rich font attributes in

their syntax highlighting that resemble the final document.
Preview-latex [12] pushes the concept further by rendering
code regions such as math formulaes in-place. As for WYSI-

Figure 2: Animation of an HTML form.

WYG input features, toolbars and menus for inserting markup
commands into the code are common in advanced code edi-
tors like emacs. Conversely, WYSIWYG-oriented editors ex-
ist that let users type markup code that is either inserted in
the document and interpreted later like in Wikispaces or in-
terpreted on-the-fly like in TeXmacs [17]. To further explore
this rich design space, we propose an alternative in-place pre-
view approach that uses animated transitions.

Animated Transitions
Animated transitions are a type of animation that consist in
showing a visual change in a smooth rather than an abrupt
way. Their use in user interfaces has been advocated [7, 16]
and studies have shown that they can help understand the spa-
tial relationship between views and help users track changes
in a variety of tasks (for a brief review, see [8]).

Animated transitions can however be hard to design and to
implement. Animated text, in particular, has been used for
various purposes such as expressing ideas and emotions [14]
but there has been little work on when and how to support
animated text transitions. Two exceptions are Chang et al’s
system for showing and hiding annotations in documents [6]
and more recently Diffamation, a system for showing docu-
ment edits over time [8]. The latter work has shown that an-
imating text between revisions rather than abruptly flipping
pages helps users navigate in edit histories.

Gliimpse targets a different application domain and also dif-
fers from the design and implementation standpoints. Chang
et al’s system merely animates the scale and position of text
paragraphs. The Diffamation system introduces a richer an-
imation language involving text insertions and deletions and
paragraph reflow. Gliimpse goes a step further by supporting
animation between documents having a different layout, dif-
ferent fonts, and possibly involving complex transitions such
as a markup command changing into an image.

Time

Figure 4: Gliimpse’s status bar.

GLIIMPSE OVERVIEW
Gliimpse has been designed to be a quick, in-place preview
tool for document markup languages. With Gliimpse, users
stay in their text editing environment and can focus on their
code, but are still able to check its rendering whenever they
need. Whenever the user presses a hot key (we use Alt), the
text editor switches to a document view with a fluid 1-second
animation (Figures 1, 2). When she releases the hot key, the
reverse animation is performed and she is back in her code.

The use of smooth animated transitions rather than abrupt
view switches is motivated by previous work showing their
benefits for navigating across text revisions [8]. Although
fast and visually rich animated transitions can initially intim-
idate users, specific portions of text are easy to follow [8].

Gliimpse always transitions to the document region corre-
sponding to the code currently in focus. The code focus is
the area immediately surrounding the caret when it is visible,
or the whole viewport content otherwise. The result is that
the piece of code being edited will not move while the anima-
tion is performed, unless the document viewer has reached its
scrolling limits. When the user moves the caret outside the
viewport by scrolling elsewhere in the text editor and uses
Gliimpse, the overall motion of the viewport is stabilized.

Since an actual document viewer is displayed upon comple-
tion of the animation, the user can scroll the rendered docu-
ment while holding the hotkey. The viewport motion is then
stabilized in the opposite direction at key release and Gli-
impse animates back to a possibly new region of the code.
Gliimpse can therefore be used as a navigation aid: the user
just has to zoom the document out then gliimpse whenever
she wants to jump to a different part of the document.

Because the layout of documents and markup code do not al-
ways match (e.g., with table cells and floating figures), visual
objects can cross each other. To address this, Gliimpse has an
option where objects that move with respect to the current fo-
cus follow curved paths. Figure 3a on the next page shows an
example where a table (green square) is being edited. While
gliimpsing, a larger table defined below in the code jumps
above but goes around the focus (purple arrow). The user
sees that the large table went to the wrong place and edits its
placement options, which changes the focus to the large table
and stabilizes it during the next gliimpse (Figure 3b).

This scenario illustrates how the overview and context pro-
vided by animations can help users make incidental discov-
eries and quickly build a mental map of where things go from
the code to the document and vice versa. This didactic aspect
of code / document animation can be exploited to help users
learn a markup language, for example in Web tutorials.

Finally, when the code is edited, a background process re-
renders the document and the animation. In our current pro-
totype, this can last from 1/10 sec to more than a minute
depending on document size (see the implementation sec-
tion). A gray light in the Gliimpse status bar indicates that
the process is working (Figure 4). After the user stops editing
and once the animation is ready, the light switches to green,
meaning that Gliimpse can be used. After a few seconds the
light then switches to blue, meaning that a higher-quality, vi-
sually smooth version of the animation is ready to play.

DESIGN AND IMPLEMENTATION
We implemented the Gliimpse prototype in Java, with ba-
sic support for LATEX, HTML, MediaWiki and RTF docu-
ments. We describe how we animate between these markup
languages and the rendered documents.

Mapping the Code View with the Document View
To be able to compute animations, one needs to first generate
a code view (i.e., a visual representation of the code as shown
by the text editor), a document view, and retrieve a precise
(character-level) mapping between the two views.

Figure 5 illustrates the problem and introduces notations that
will be used in the rest of this section. It shows relationships
between the markup text (T0, bottom left of the Figure), the
code view (V0, top left), the document view (V1, top right)
and the document in raw text format (T1, bottom right). We
use the notation XAYB to denote a function that maps sub-
sets of XA to subsets of YB (thick black lines in the Figure):

• V0V1 (top) is the mapping between the two views. We
assume V0 and V1 to be collections of glyphs and other
graphical objects (possibly structured as a scene graph)
with all information needed to render them individually
(bounds, font, etc.). The mapping function V0V1 is the in-
formation we need in order to compute animations, which
virtually no programming library or API directly provides.

• T0V0 (bottom left) is the mapping between the source code
and its rendering in the text editor, which we assume to
be a function that maps subsets of T0 (i.e., collections of
character indices) to subsets of V0. This information is
typically provided by the text editor’s inspection methods
or accessibility API.

\documentclass{article}\n\usepackage{times}\n\n\
begin{document}\n\n\title{The Unsuccessful Self-
Treatment of a Case of ``Writer's Block''}\n\n\a
uthor{Dennis Upper\\\nVeterans Administration Ho
spital, Brockton, Massachusetts}\n\n\maketitle\n
\n\end{document}\n\n

The Unsuccessful Self-Treatment of a Case of\n «
Writer's Block»\nDennis Upper\nVeterans Administ
ration Hospital, Brockton, Massachusetts\napril
18, 2011\n1

V0 V1

T0 T1

V0V1

T0V0 T1V1

T0T1

T0V
1

Code View Document View

Raw TextMarkup Code

Re
nd

er
in

g

Animation

Figure 5: Mappings between the code (T0), its view
(V0), the document view (V1) and its text version (T1).

a b

Figure 3: a) Motion of a large table (arrows) while another table is in focus (rectangle) ; b) The large table is now the focus.

• T0V1 (diagonal line) is the mapping between the source
code and the document view. Markup language inter-
preters and renderers rarely maintain this information and
when they do, it is often at a too coarse level of granularity
to allow for precise animations. For example, TEX Source
Specials and SyncTEX only provide mappings at the line
level due to limitations of the TEX engine [13].

• T1V1 (bottom line) is the mapping between a raw text ver-
sion of the document and the document view. This infor-
mation is typically maintainted by document viewers to al-
low for text selection or to provide accessibility support.

The best way to reconstruct V0V1 is by computing V0V1 =
T0V

−1
0 ◦ T0V1. However, since getting T0V1 at the character

level is hard in practice and because we initially just wanted
to build a prototype, we chose to reconstruct V0V1 by com-
puting V0V1 = T0V

−1
0 ◦ T0T1 ◦ T1V1. This approach is less

robust but more flexible and makes it easier to plug Gliimpse
into any interpreter and renderer available in Java.

In our current prototype, we obtain V0 and T0V0 from the
Java’s text component (JEditorPane) inspection methods.
The same Java component is used to render HTML, Medi-
aWiki and RTF documents, and also provides V1, T1 and
T1V1. LATEX source code is interpreted through a native call
to pdflatex and the generated PDF file is rendered with
a custom Java component based on the Sun PDF Renderer.
We use the fonts from this renderer and the Apache PDF-
Box library to extract V1, T1 and T1V1. In all formats, non-
character elements are mapped to white spaces in T1.

The mapping T0T1 is built by cleaning up T0 and T1 and
computing a diff between the two strings. We use Myer’s
diff algorithm [15], which supports deletions, insertions and
moves. The cleaning up of T0 essentially consists in stripping
out markup elements and replacing non-character elements
such as <img*/> with custom tags. The white spaces in T1
that are mapped to non-character glyphs are replaced with the
same tags. All string operations maintain a mapping with the
original character indices. T0T1 can therefore be obtained by
computing T0T1 = T0T

?
0 ◦T ?

0 T
?
1 ◦T1T ?−1

1 , with T ?
0 and T ?

1
being the processed texts and T ?

0 T
?
1 their diff.

For the formats we support, this method accurately rebuilds
character mappings between markup code and the raw text
version of simple documents. It is however not robust enough
for a final product: duplicate text regions and complex map-
pings can defeat the diff algorithm and cause document re-

gions to be either wrongly animated or not animated at all.
We implemented a T0T1 mapping editor and used it to author
the LATEX math tutorial scenario shown in the accompanying
video. Fully automated approaches are arguably preferable
and we hope that in-place preview techniques like Gliimpse
will inspire the implementation of accurate, robust and us-
able APIs for mapping code views with rendered views.

Animating Between Fonts
In contrast with text animation techniques described in pre-
vious work [6, 14, 8], we need to animate between different
fonts. Parametric typefaces [1] can linearly interpolate be-
tween glyphs but only if they share the exact same structure
by design. Morphing between arbitrary shapes is a hard prob-
lem for which methods have been proposed [2] but they are
computationally expensive.

For the purposes of animated transitions, we found that sim-
ply using alpha-blending to produce a dissolve effect yields
excellent visual results. However, for this effect to work
glyphs need to be properly aligned. Glyphs from different
fonts can significantly differ in size even when the same font
point size is used (Figure 6a). Aligning those glyphs based
on their logical or geometrical bounds (Figure 6b,c) does not
fully solve the problem. We therefore chose to refine glyph
alignment using a pixel-based approach (Figure 6d).

We first collect all pairs of glyphs that need to be animated.
For each pair, we draw one of the two glyphs off-screen with
a fixed size (we use a point size of 30) and draw the other one
on top using the method from Figure 6c. We compute the
pixel color difference then vary the geometry of the second
glyph (x, y, width, height and x-shear for italics) using a
gradient descent scheme until a local minimum is reached.
The result is cached and generalized to fonts of different
sizes using linear interpolation. This method works best for
within-character animations but can also polish animations
such as changes in title capitalization.

a b c d

Figure 6: Alignment of two glyphs with the same font
size (a), based on logical bounds (b), geometrical
bounds (c) and pixels (d).

Animating the Document
Gliimpse’s animation scheme is similar to the Diffamation
system [8], with a few notable differences we outline here.

Object Interpolation. Like Diffamation, Gliimpse builds a
parametric scenegraph that displays the initial document when
rendered at t = 0 and the final document when rendered at
t = 1. For t ∈]0, 1[, the scenegraph essentially performs a
linear interpolation of its nodes’ bounding boxes.

We support 3 basic node types: glyph transitions, non-glyph
transitions and paragraph transitions. Non-glyph transitions
include transitions from a glyph to an image and between
glyph groups. They are rendered by linearly interpolating
the bounding boxes of the initial and final objects and alpha-
blending them. Glyph transitions are computed the same
way in addition to the alignment transformation previously
described. Non-glyph objects are currently rendered as rect-
angles (see Figure 2). Paragraphs will be described later on.

When an object in V0 or V1 maps to nothing, we rapidly fade
it in or out, in-place (as opposed to [8] where objects grow
or shrink). Furthermore, we found that animating between
groups of glyphs produces visual clutter or very wide charac-
ters (e.g., when animating from \ref{fig:teaser} to 1),
both of which are visually unpleasant. We therefore occlude
those transitions at the middle of the animation by overlay-
ing a rectangle with opacity 1 − 2 · |t − 1/2| (see Figure 2).
Finally, the scenegraph’s root is animated by interpolating its
background color and its position in the two viewports.

Paragraph Extraction. Like in [8], we group scenegraph
nodes in paragraphs to be able to animate text reflow. How-
ever, we cannot rely on well-formed paragraph structures be-
cause some formats such as PDF produce V1 content that
merely consists in flat collections of glyphs. We therefore
extract paragraphs from individual glyphs as follows:

We iterate over characters ti of T0 and at each step we com-
pute the bounding box Bi of the object T0V1(ti) in V1 and
append it to the bounding box Li of the current text line in
V1. At each step we test the following cases (for all our for-
mats we use vspaceT0 = 2 and vspaceV 1 = 2):

• If {ti−k, . . . , ti} contains only whitespaces among which
vspaceT0 carriage returns, a new paragraph is created,

• if T0V1(ti) = ∅ we proceed to the next index i+ 1,
• if Bi

y0 > Li−1
y0 + vspaceV 1 · Li−1

height a new paragraph is
created,

• if Bi
x0 < Bi−1

x0 and Bi
y0 > Li−1

y0 a new line is started, in
which case Li is initialized to Bi,

• if Bi
x0 > Bi−1

x0 and Bi
y1 > Li−1

y0 and Bi
y0 < Li−1

y1 the line
continues and Li is updated to Li−1 ∪Bi.

• otherwise, a new paragraph is created.

Once a paragraph is created for the indices i to j, we iterate
over all subsets of {ti, . . . tj} of cardinality > 1 that map to
content in V1 and add them to the paragraph if their content
lies within the paragraph bounds in V1.

Text Reflow. Gliimpse animates text reflow within para-
graphs in a way similar to [8]: depending on which path
is shorter, a character can either follow a direct path or be

“modulo-animated”, i.e., move along its line and reach the
edge to re-appear on the other side. In our algorithm, each
character is animated independently and modulo-interpola-
tions are limited to a full paragraph width. The visual effect
on a paragraph with growing width would be that words on
the second line move slowly to the left, those on the third line
move similarly but faster, and so on until a line breaks in two
pieces, one going quickly to the left and the other one slowly
going up. Finally, our modulo metrics accounts for the fact
that our paragraphs can have lines of different heights and
these heights are linearly interpolated during the animation.

Scrolling stabilization. We stabilize horizontal and vertical
scrolling between the code and the document viewports by
minimizing the average motion of objects that are visible in
the source viewport, as described in [8]. In addition, when
the caret is visible, we use its position as the region of inter-
est and stabilize the nearest object rather than the entire view-
port. Stabilization is recomputed every time the user scrolls
into the code, moves the caret, or scrolls into the document.

Curved Trajectories. In contrast with [8], we support diff
move operations and chunks of text can therefore cross on the
screen. To make these motions easier to understand and limit
occlusions of the region of interest, an option allows objects
to follow curved trajectories (see Figure 3). Our method, in-
spired from link drawing techniques in graphs [11], consists
in having objects follow an arc and those moving in the op-
posite direction follow an arc oriented to the opposite side.
More specifically, after scrolling stabilization we add to the
absolute trajectory P (t) of each object (paragraph or isolated
node) the vector sin(πt)k·[rx(P (1)

y −P (0)
y), ry(P

(1)
x −P (0)

x)].
We use k = 0.5, rx = −0.5 and ry = 0.05.

Since arc radii are proportional to object motion, anima-
tions with no crossings will have close-to-straight trajecto-
ries (since they have been stabilized) but crossing objects
will deviate from their path as if they tried to avoid each
other. Even if this method does not guarantee the absence
of overlaps, it presents the advantage of being context-free
(every object ignores the position of others), which makes it
simple and guarantees motion coherence (objects which are
normally close will remain close). The asymmetry between
the values we chose for rx and ry stems from fact that docu-
ments are structured in lines.

Playing Back and Recomputing Animations
The animated scenegraph is parented to a Java layered con-
tainer that also contains the document viewer and the text
editor. When the hot key is pressed, the scenegraph is set to
t = 0, brought to the top and the animation starts. When the
scenegraph shows the final document at t = 1 the actual doc-
ument viewer is brought to the top. This transition is shown
with a quick dissolve effect because the document view occa-
sionally shows decorations that are not inspectable and hence
not visible during the animation. The reverse sequence of op-
erations is performed when the hot key is released.

We animate between t = 0 and 1 with a duration of 1 second,
which has been shown to be appropriate for reasonably com-
plex visual transitions and with a slow-in slow-out pacing,
which has been shown to facilitate object tracking [10].

Task a b c d e FPS
(s) (s) (s) (s) (s) (Hz)

HTML 1st 0.21 0.12 0.04 0.03 0.29 75
2nd 0.21 0.07 0.02 0.01 0.01 89

LaTeX 1 1st 1.90 0.28 0.41 0.06 0.64 36
2nd 0.97 0.26 0.28 0.04 0.02 40

LaTeX 2 1st 3.72 37.0 8.68 10.5 19.5 12
2nd 2.68 41.3 8.53 10.5 0.62 13

Table 1: Task execution times for three documents.

Animations are updated on-the-fly by a scheduler that runs
in a separate thread and skips unnecessary computations. For
example, modifying the source code requires a) re-rendering
the document, b) computing the T0T1 mapping, c) inspecting
the views for T0V0 and T1V1, d) building the scenegraph, e)
aligning new glyphs and f) stabilizing the views. However,
when a view is resized only tasks c) to f) are performed, and
when it is scrolled only task f) is done. After the animation
is ready the scheduler runs an off-screen rendering task after
which complex animations play back more fluidly with an
optional motion blur effect (visible in the Figures).

Table 1 shows computation times on a PC with a 2.40GHz
Intel Xeon processor for the tasks mentioned above (task f
is negligible), as well as the animation frame rate. Figures
are given for the first run (1st) and after inserting a character
in the code (2nd). The first two examples are a short HTML
file (700 characters) and LATEX file (1900 characters, about 1
page). These computation times are adequate for interactive
use but the third example, a 5-page LATEX draft of this article
(30,000 characters), shows that our current prototype does
not scale up. The most expensive task is the code/document
mapping task, which uses heavy regexp searches and hashta-
bles. This operation can be optimized or avoided altogether
with an API that provides T0V0 as previously discussed.

CONCLUSION AND FUTURE WORK
We presented Gliimpse, a quick in-place preview technique
that smoothly transitions between markup code and its visual
rendering. This technique is an alternative to classical pre-
view tools that takes less screen real-estate and offers rapid
overviews of code-to-document mappings.

More work is needed to identify the actual benefits of anima-
tions over well-established approaches such as synchronized
views. We hypothesize that animations can save users time
and effort because they involve attentional rather than ex-
plicit selection of regions of interest. This is however only a
conjecture that needs to be put to the test. And even in case
animation helps, it is likely that synchronized views are more
suited for some tasks and that both need to be supported.

Possible future extensions include local animated previews,
integration with synchronized highlighting and editing, ani-
mation of series of code transformations (e.g., XSLT) and an-
imation of non-textual markup documents like music sheets
or vector graphics. Furthermore, Gliimpse is currently only
a prototype and a more robust version is necessary for users
to be able to try it on real writing tasks.

ACKNOWLEDGEMENTS
We thank Jean-Daniel Fekete for insightful discussions.

REFERENCES
1. Adobe. Designing multiple master typefaces, 1995.

http://partners.adobe.com/public/developer/

en/font/5091.Design_MM_Fonts.pdf.

2. M. Alexa, D. Cohen-or, and D. Levin.
As-rigid-as-possible shape interpolation. In Annual
Conference on Computer Graphics, 157–164, 2000.

3. M. Beaudouin-Lafon. Instrumental interaction: an
interaction model for designing post-wimp user
interfaces. In Proc. CHI ’00, 446–453. ACM.

4. S. bin Ali. 20 fantastic full screen text editor for
distraction free writing, 2009.
http://www.techmalaya.com/2009/02/07/

full-screen-text-editor-blogger/.

5. K. Brooks. Lilac: a two-view document editor.
Computer, 24(6):7 –19, jun 1991.

6. B.-W. Chang, J. D. Mackinlay, P. T. Zellweger, and
T. Igarashi. A negotiation architecture for fluid
documents. In Proc. UIST ’98, 123–132. ACM.

7. B.-W. Chang and D. Ungar. Animation: from cartoons
to the user interface. In Proc. UIST ’93, 45–55. ACM.

8. F. Chevalier, P. Dragicevic, A. Bezerianos, and J.-D.
Fekete. Using text animated transitions to support
navigation in document histories. In Proc. CHI ’10,
683–692. ACM.

9. J. H. Coombs, A. H. Renear, and S. J. DeRose.
Markup systems and the future of scholarly text
processing. Commun. ACM, 30:933–947, Nov. 1987.

10. P. Dragicevic, A. Bezerianos, W. Javed, N. Elmqvist,
and J.-D. Fekete. Temporal distortion for animated
transitions. In Proc. CHI ’11, 2009–2018. ACM.

11. J.-D. Fekete, D. Wang, N. Dang, and C. Plaisant.
Overlaying graph links on treemaps. In Proc. Infovis
’03 (demo), 2003.

12. D. Kastrup. Revisiting WYSIWYG paradigms for
authoring latex, 2002.
http://www.tug.org/TUGboat/tb23-1/kastrup.pdf.

13. J. Laurens. Direct and reverse synchronization with
synctex. TUGboat, 29(3), 2008.

14. J. C. Lee, J. Forlizzi, and S. E. Hudson. The kinetic
typography engine: an extensible system for animating
expressive text. In Proc. UIST ’02, 81–90. ACM.

15. E. Myers. An o(nd) difference algorithm and its
variations. Algorithmica, 1(2):251–266, 1986.

16. G. G. Robertson, J. D. Mackinlay, and S. K. Card.
Cone trees: animated 3d visualizations of hierarchical
information. In Proc. CHI ’91, 189–194. ACM.

17. J. van der Hoeven. Gnu texmacs: A free, structured,
wysiwyg and technical text editor. In Actes du
Congres GUTenberg, volume 39-40, 39–50, 2001.

http://partners.adobe.com/public/developer/en/font/5091.Design_MM_Fonts.pdf
http://partners.adobe.com/public/developer/en/font/5091.Design_MM_Fonts.pdf
http://www.techmalaya.com/2009/02/07/full-screen-text-editor-blogger/
http://www.techmalaya.com/2009/02/07/full-screen-text-editor-blogger/
http://www.tug.org/TUGboat/tb23-1/kastrup.pdf

	ABSTRACT
	INTRODUCTION
	RELATED WORK
	Document Editing
	Animated Transitions

	GLIIMPSE OVERVIEW
	DESIGN AND IMPLEMENTATION
	Mapping the Code View with the Document View
	Animating Between Fonts
	Animating the Document
	Object Interpolation.
	Paragraph Extraction.
	Text Reflow.
	Scrolling stabilization.
	Curved Trajectories.

	Playing Back and Recomputing Animations

	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

